

Instituto Tecnológico de Pachuca

"2020, Año de Leona Vicario, Benemérita Madre de la Patria"

PROPIEDADES DINÁMICAS DE UNA CHUMACERA HIDRODINÁMICA MEDIANTE LA TÉCNICA DE MOVILIDAD

BAJO LA OPCIÓN: TESIS

PARA OBTENER EL GRADO DE MAESTRO EN INGENIERÍA MECÁNICA

PRESENTA: ING. FABIÁN SÁNCHEZ NARANJO

ASESORES: DR. IGNACIO RAMÍREZ VARGAS DR. ROQUE HERNÁNDEZ DONADO

REVISORES: DR. LUIS MANUEL PALACIOS PINEDA DR. MARIO EMIGDIO RODRÍGUEZ CASTILLO

> Pachuca de Soto, HGO. Noviembre de 2020. 225 Páginas

Carretera México-Pachuca Km. 87.5, Col. Venta Prieta, Pachuca, Hidalgo. C.P. 42080, A. P. 276. Tels. : (01 771) 710 52 51, 170 03 45, 170 03 01, 170 06 87 www.tecnm.mx | www.itpachuca.edu.mx

Instituto Tecnológico de Pachuca

"2020, Año de Leona Vicario, Benemérita Madre de la Patria"

División de Estudios de Posgrado e Investigación Consejo de Posgrado de la Maestría en Ingeniería Mecánica

ACTA

Siendo las 13:00 horas del 15 de febrero de 2020, reunidos en el aula S10, el Consejo de Posgrado de la Maestría en Ingeniería Mecánica manifiesta la APROBACIÓN del tema de Tesis: Propiedades Dinámicas de una Chumacera Hidrodinámica Mediante la Técnica de Movilidad, con el siguiente contenido:

Resumen/Abstract

Nomenclatura, Contenido, Índice de cuadros, gráficas y figuras.

- 1. Estado del Arte o Antecedentes
- 2. Marco Teórico
- 3. Método de movilidad
- 4. Modelo de presurización para una chumacera presurizada
- 5. Campos de presión en una chumacera
- 6. Fuerzas en la película de aceite
- 7. Coeficientes rotodinámicos de una chumacera hidrodinámica corta
- 8. Velocidad umbral de estabilidad

10. Resultados

Conclusiones, Bibliografía, Apéndices

Para cubrir el requisito correspondiente a la Tesis para que el Ing. Fabián Sánchez Naranjo obtenga el grado de Maestro en Ingeniería Mecánica, bajo la dirección del Dr. Ignacio Ramírez Vargas, profesor de la Maestría en Ingeniería Mecánica de la División de Estudios de Posgrado e Investigación.

ATENTAMENTE

Jus	Marina Marmo E	> (linn)
Dr. Edgar Ernesto Vera Cárdenas	Dra. Marisa Moreno Ríos	Dr. Luis Manuel Palacios Pineda
ra. Erika Osiris Ávila Dávila	Dr. Ignacio Ramírez Vargas	Dr. Hugo Francisco Abund Fong

Tels. : (01 771) 710 52 51, 170 03 45, 170 03 01, 170 06 87 www.tecnm.mx | www.itpachuca.edu.mx

Instituto Tecnológico de Pachuca

"2020, Año de Leona Vicario, Benemérita Madre de la Patria"

Pachuca, Hidalgo, <mark>18/Septiembre/2020</mark> OFICIO No. DEPI-050-20

C. ING. FABIÁN SÁNCHEZ NARANJO PRESENTE

La que suscribe, jefa de la División de Estudios de Posgrado e Investigación, le comunica que los miembros de la Comisión Revisora, designada por el Consejo de Posgrado de la Maestría en Ingeniería Mecánica para examinar su Tesis:

> Propiedades Dinámicas de una Chumacera Hidrodinámica Mediante la Técnica de Movilidad

se han reunido, y después de intercambiar opiniones manifiestan su aprobación de la Tesis, en virtud que satisface los requisitos señalados por las disposiciones reglamentarias vigentes y, en consecuencia, se autoriza su impresión.

Sin otro particular por el momento, quedo de Usted.

ATENTAMENTE

El Hombre Alimenta el Ingenio en Contacto con la Ciencia

M. A. C. ELODIA CLAUDIA GUERRERO ORTIZ JEFA DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

C.p. Archivo ECGO/LMPP INSTITUTO TECNOLÓGICO DE PACHUCA División de estudios DE POSGRADO E INVESTIGACIÓN

Carretera México-Pachuca Km. 87.5, Col. Venta Prieta, Pachuca, Hidalgo, C.P. 42080, A. P. 276. Tels. : (01 771) 710 52 51, 170 03 45, 170 03 01, 170 06 87 www.tecnm.mx | www.itpachuca.edu.mx

Agradecimientos.

A Dios y mi familia por su amor incondicional, por su apoyo, por sus consejos en momentos alegres y complicados, por estar presentes en cada etapa de mi formación académica y profesional.

A CONACYT (Consejo Nacional de Ciencia y Tecnología) por la beca otorgada durante el trascurso de la maestría y por la oportunidad de realizar una estancia en el extranjero (Universidad Autónoma del Caribe en Barraquilla, Colombia).

A mi director de tesis Dr. Ignacio Ramírez Vargas, por su apoyo, por su tiempo y por aportarme herramientas y conocimientos necesarios para la culminación de este trabajo de investigación.

A mi codirector de tesis Dr. Roque Hernández Donado, por su apoyo y consejos durante mi estancia en la Universidad Autónoma del Caribe en Barranquilla Colombia.

A mis sinodales Dr. Luis Manuel Palacios Pineda y el Dr. Mario Emigdio Rodríguez Castillo, por su apoyo y colaboración en las observaciones de este trabajo de investigación.

A los doctores del consejo de posgrado, por su aportación en conocimientos y herramientas necesarias para mi formación profesional.

Resumen.

En el presente trabajo se realizó el análisis dinámico de una chumacera hidrodinámica corta en estado transitorio y estable, como una propuesta de solución a los problemas generados por las vibraciones en los soportes hidrodinámicos, utilizando como técnica el Vector de movilidad, como un método innovador para resolver la Ecuación de la lubricación de Reynolds la cual describe el modelo clásico de una chumacera hidrodinámica (sin presurización). Para el caso de chumacera hidrodinámica corta con presurización; se usa el modelo de la función especial Delta de Dirac $\delta(x)$, el cual describe un puerto de inyección de aceite para la solución analítica de la Ecuación de Reynolds en estado estable. Determinadas las características en estado transitorio y estable para el caso clásico (sin Presurización), se obtuvieron las características en estado estable para el caso presurizado cuando se inyecta lubricante en la posición $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$ y $7\pi/6$ respectivamente. De las características obtenidas en ambos casos, se calculan los coeficientes rotodinámicos (rigidez y amortiguamiento) mediante la aproximación analítica de Ocvirk para el caso clásico y la aproximación dada por la función especial Delta de Dirac $\delta(x)$, con los datos obtenidos fue posible determinar sus características operacionales. Se analizaron los resultados obtenidos y es importante resaltar; que la aplicación de la técnica de movilidad permitió obtener resultados en estado transitorio como en estado estable de manera precisa, rápida y generando algoritmos que facilitan su aplicación, por lo cual puede considerarse aceptable para rápidas soluciones gráficas de un sistema rotor-chumacera y ser utilizados para casos más complejos. Para los puertos de presurización analizados, se llegó a la siguiente conclusión; bajo las condiciones a las cuales se realizaron los análisis en este trabajo, se aumentó en la velocidad umbral de estabilidad en $\gamma = 11\pi/6$ y $7\pi/6$, mientas que en $\gamma = \pi/6$, $5\pi/6$ se redujo la velocidad umbral de estabilidad, por lo cual se debe tomar en cuenta estos datos como consideraciones de diseño en una máquina rotodinámica.

Palabras clave: chumacera hidrodinámica, Ecuación de Reynolds, Técnica de movilidad, Sin presurizar, dinámico, Delta de Dirac $\delta(x)$, presurizada, estable.

Abstract

In the present work, the dynamic analysis of a short hydrodynamic bearing in a transitory and stable state was carried out, as a solution proposal to the problems generated by vibrations in hydrodynamic supports, using the Mobility Vector as a technique, as an innovative method to solve the Reynolds Lubrication Equation which describes the classic model of a hydrodynamic bearing (without pressurization). In the case of short hydrodynamic bearing with pressurization; The Dirac Delta special function model $\delta(x)$ is used, which describes an oil injection port for the steady-state Reynolds Equation analytical solution. Determined the characteristics in transitory and stable state for the classic case (without pressurization), Steady state characteristics were obtained for the pressurized case when lubricant is injected in the position $\gamma = \pi / 6$, $11\pi / 6$, $5\pi / 6$ and $7\pi / 6$ respectively. Of the characteristics obtained in both cases, Rotodynamic coefficients (stiffness and damping) are calculated using Ocvirk's analytical approximation for the classic case and the approximation given by the Dirac Delta special function $\delta(x)$, with the obtained data it was possible to determine its operational characteristics. The results obtained were analyzed and it is important to highlight; that the application of the mobility technique allowed obtaining results in a transient state and in a stable state in a precise, fast way and generating algorithms that facilitate its application, which is why it can be considered acceptable for quick graphic solutions of a rotorbearing system and be used for more complex cases. For the analyzed pressurization ports, the following conclusion was reached; Under the conditions under which the analyzes were carried out in this work, the stability threshold speed was increased in $\gamma = 11\pi / 6$ and $7\pi / 6$, while in $\gamma = \pi / 6$ 6, $5\pi/6$ the threshold speed was reduced. of stability, therefore these data should be taken into account as design considerations in a rotodynamic machine.

key words: hydrodynamic journal bearing, Reynolds equation, Mobility technique, dynamic, without pressurizing, Dirac Delta δ (x), pressurized, stable.

Agradecimientos.	I
Resumen.	II
Abstract	III
Lista de Tablas.	VI
Lista de Figuras.	XI
Nomenclatura.	XVII
Introducción.	1
Capítulo 1. Estado del Arte o Antecedentes.	4
1.1. Lubricación hidrodinámica	4
1.2. Rotodinámica y sus Antecedentes.	7
1.3. Estudios contemporáneos en soportes hidrodinámicos.	9
Capítulo 2. Marco Teórico.	19
2.1. Tribología	19
2.2. Viscosidad en lubricantes.	20
2.2.1 Unidades de la viscosidad	21
2.2.2. Variación de la viscosidad por temperatura.	22
2.2.3. Variación de la viscosidad por presión	23
2.3. Chumaceras hidrodinámicas	25
2.3.1. Importancia de la Modelación matemática en chumaceras hidrodinámicas	25
2.3.2. Ecuación de Reynolds	25
2.3.3 clasificación de chumaceras hidrodinámicas por longitud.	28
2.5.4. Clasificación de chumaceras hidrodinámicas por configuración geométrica	33
Capítulo 3. Método de movilidad	35
Capítulo 4. Modelo de presurización para una chumacera presurizada	40
4.1. Modelo matemático para una chumacera corta con un anillo de presurización	42
4.2. Modelo Matemático para una chumacera corta con una línea de presurización	42
Capítulo 5. Campos de presión en una chumacera.	44
5.1. Obtención del campo de presión en una chumacera.	44
5.2. Campo de presión en una chumacera corta	46
5.3. Solución del campo presurizado.	49
Capítulo 6. Fuerzas en la película de aceite	51
6.1. Fuerza de presión de una chumacera corta no presurizada	54
6.2. Fuerza de presión en una chumacera corta presurizada.	56

Índice

6.3. Ángulo de equilibrio de una chumacera presurizada	57
Capítulo 7. Coeficientes rotodinámicos de una chumacera hidrodinámica corta (rigidez y amortiguamiento).	61
7.1. Coeficientes rotodinámicos para el caso clásico.	63
7.2. Coeficientes rotodinámicos para el caso presurizado.	67
Capítulo 8. Velocidad umbral de estabilidad	70
8.1. Criterio de Lienard-Chipard	70
Capítulo 9. Metodología	73
9.2. Descripción del método de movilidad dimensional y su aplicación en una chumacera hidrodinámica corta (Caso clásico)	74
9.3. Método de movilidad adimensional para una chumacera hidrodinámica corta (caso clás	ico). 77
9.4. Obtención de las posiciones de equilibrio (excentricidad ε_{pres} y ángulo φ_{pres}) para una chum presurizada (caso presurizado).	acera 79
9.5. Obtención de los coeficientes rotodinámicos (caso clásico y caso presurizado)	81
9.6 Obtención de la velocidad umbral de estabilidad	84
Capítulo 10. Resultados.	85
10.1. Características en estado dinámico de una chumacera hidrodinámica corta por el méto movilidad.	do de 85
10.2. Características en estado dinámico para chumaceras hidrodinámicas cortas por el mét de movilidad en forma adimensional.	odo 90
10.3. Excentricidad y ángulo de equilibrio a partir del balance de fuerzas en una chumacera presurizada a γ =11 π /6, π /6, 5 π /6 y 7 π /6.	corta 99
10.4. Coeficientes rotodinámicos para una chumacera hidrodinámica presurizada con puert inyección para $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0	os de 121
10.5 Velocidades umbrales de estabilidad para una chumacera hidrodinámica presurizada o puertos de inyección para $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0.	on 196
Conclusiones	204
Referencias.	206

Lista de Tablas.

Tabla 1. Estudios contemporáneos referentes a soportes hidrodinámicos jError! Marcador no definido.
Tabla 2. Unidades de la viscosidad [4]. 22
Tabla 3. Variación de la viscosidad por efecto de la presión en aceite de parafina [4]
Tabla 4. Comparación de la viscosidad en (Pa. s) a 20°C [4] 24
Tabla 5. Valores numéricos de números de Sommerfeld (Khonsari-Booser) vs número de Sommerfeld,
para la aproximación de la chumacera corta y su correspondiente error [1] 30
Tabla 6. Clasificación de chumaceras hidrodinámicas conforme su configuración geométrica [4, 20] 33
Tabla 7. Coeficientes de rigidez y amortiguamiento de una chumacera corta (caso clásico) en el sistema de
coordenadas x-y
Tabla 8. Coeficientes rotodinámicos (rigidez y amortiguamiento por efecto de la presurización) de una
chumacera corta presurizada externamente con un puerto puntual, cuya ubicación axial (a) y angular
(γ)[1], Debido a cuestiones de espacio en la nomenclatura
Tabla 9. Características de una chumacera hidrodinámica
Tabla 10. Coeficientes de rigidez y amortiguamiento de una chumacera corta (caso clásico) en el sistema
de coordenadas x-y
Tabla 11. Coeficientes rotodinámicos (rigidez y amortiguamiento por efecto de la presurización) de una
chumacera corta presurizada externamente con un puerto puntual, cuya ubicación axial (a) y angular
(γ)[1]. Debido a cuestiones de espacio en la nomenclatura se omitió el subíndice (pres), por lo tanto: ϵ =
εpres, $φ=φpres$
Tabla 12. Excentricidad y ángulo de equilibrio para números de Sommerfeld, caso adimensional90
Tabla 13. Posiciones de equilibrio para una chumacera hidrodinámica presurizada tipo corta, para cuando
la intensidad de presurización es cero (Fprt=0)
Tabla 14. Ángulo de equilibrio y números de Sommerfeld para una chumacera hidrodinámica presurizada
tipo corta, cuando $\gamma = \pi/6$, (L/D) = (1/4), .05 $\leq \epsilon$ pres \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100,
fprt≈0
Tabla 15. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una
chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = \pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100,
fprt≈0. Datos obtenidos a partir de la interpolada a partir de los datos de la tabla 14 106
Tabla 16. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada
tipo corta, cuando $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\leq \epsilon$ pres \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100,
fprt≈0

Tabla 17. Excentricidad y ángulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 11\pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 . Tabla 18. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{\text{pres}} \ge .95$ en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, Tabla 19. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 5\pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 . Datos obtenidos a partir de la interpolada a partir de la interpolada a partir de los datos de la tabla 18... 114 Tabla 20. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 7\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{\text{pres}} \ge .95$ en lapsos de 0.05. y fprt =1, 5, 10, 20, 50, 100, Tabla 21. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 7\pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 . Tabla 22. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, 11 $\pi/6$, 5 $\pi/6$, 7 $\pi/6$. a=0, (L/D) = (1/4), .05 $\leq \epsilon_{pres} \geq$.95 en lapsos de .05, fprt \approx 0, debido Tabla 23. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$, a=0, (L/D) = (1/4), fprt \approx 0, debido a que fprt \approx 0 se podría considerar el caso clásico de una chumacera hidrodinámica. Tabla 24. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo

 Tabla 30. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 31. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=20...... 134 Tabla 32. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 33. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=50..... 137 Tabla 34. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 35. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=100..... 140 Tabla 36. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 37. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=1..... 143 Tabla 38. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 39. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma=11 \pi/6$, a=0, (L/D) = (1/4), fprt=5..... 146 Tabla 40. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 41. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=10.... 149 Tabla 42 Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, Tabla 43. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=20.... 152 Tabla 44. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 45. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=50. ... 155 Tabla 46. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo

Tabla 47. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=100. . 158 Tabla 48. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 49. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=1...... 161 Tabla 50. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 51. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=5..... 164 Tabla 52. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 53. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=10...... 167 Tabla 54. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 55. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=20. 170 Tabla 56. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 57. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=50. 173 Tabla 58. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 59. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=100.... 176 Tabla 60. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 61. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=1..... 179 Tabla 62. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 63. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=5..... 182 Tabla 64. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 65. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=10..... 185 Tabla 66. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 67. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=20..... 188 Tabla 68. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 69. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=50..... 191 Tabla 70. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo Tabla 71. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=100.... 194 Tabla 72. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt ≈ 0 , fprt=1, 5, 10, Tabla 73. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt ≈ 0 , fprt=1, 5, 10, Tabla 74. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt \approx 0, fprt=1, 5, 10, Tabla 75. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt ≈ 0 , fprt=1, 5, 10,

Lista de Figuras.

Figura 1. Distribución de velocidad 20
Figura 2. Variación de la viscosidad con la temperatura para un aceite mineral parafínico (aceite ISO VG
32) [4]
Figura 3. Curva de Striebeck´s [4]
Figura 4. Representación de la geometría de un soporte hidrodinámico [6]
Figura 5. Vista simplificada de una chumacera, con los valores L, D, parar su clasificación y análisis de
comportamiento dinámico de un sistema rotodinámico [1] 29
Figura 6. Comparación de las aproximaciones lineales cuando el error es menor que el 10% VS soluciones
numéricas (puntos discretos) [1]
Figura 7. Representación del vector de movilidad y sus componentes [6]
Figura 8. Ubicación del punto de presurización en la chumacera, con ubicación axial y angular (γ)
arbitraria [1] 40
Figura 9. Sistema de coordenadas y ubicación del punto de inyección en una chumacera
Figura 10. Posición axial de alimentación de lubricante, notar que a una distancia "a" del centro de la
chumacera se presenta la inyección, pero en forma circular (anillo presurizado), además no se especifica la
posición circunferencial de presurización 42
Figura 11. Ubicación de la línea de presurización en la chumacera. Se define el valor circunferencial (γ)
para especificar la posición angular de la línea de inyección de lubricante [1]43
Figura 12. Representación del eje de coordenadas para la suma de fuerzas en la posición de equilibrio del
eje de una chumacera Hidrodinámica
Figura 13. Orbitas alrededor de un punto (ϵ) y ángulo de equilibrio (ϕ)61
Figura 14. Coeficientes rotodinámicos (rigidez y amortiguamiento) de la película del lubricante en una
chumacera hidrodinámica [1]
Figura 15. Descomposición de fuerzas de la película de lubricante en chumaceras hidrodinámicas [1],
[10]63
Figura 16. Diagrama de flujo de la metodología utilizada para la obtención de las características dinámicas
de una chumacera hidrodinámica corta (caso clásico) mediante la técnica de movilidad y los coeficientes
rotodinámicos para una chumacera corta presurizada (caso Presurizado)
Figura 17. Excentricidad en ɛx vs t(s)
Figura 18. Excentricidad en εy vs t(s)
Figura 19. Excentricidad $\varepsilon x 10$ -2 vs ϕ del centro del eje
Figura 20. Excentricidad en ɛx vs ɛy del centro del eje

"Regresar a índice"

Figura 21. Variación del grosor de la película de lubricante (hmin X10-6)
Figura 22. ε(t). Tiempo de estabilización aproximada 0.25s
Figura 23. φ(t). Tiempo de estabilización 0 .25s
Figura 24. $\epsilon(\phi)$. Debido a que el tiempo de estabilización se alcanza en .25s. y ϕ max \approx 39, sería el ángulo
de la posición final del centro del rotor en el cual estaría variando ε hasta que se estabilice
Figura 25. Excentricidad en ɛx vs ɛy del centro del eje para un tiempo de simulación de 1 segundo 88
Figura 26. Variación del grosor de la película de lubricante para un tiempo de simulación de 1 segundo.88
Figura 27. Excentricidad en ɛx vs ɛy del centro del eje para un tiempo de simulación de 1 segundo con
condiciones iniciales de $\varepsilon 0=.3$ y $\varphi 0=1$
Figura 28. ϵ [t]. Tiempo de simulación 1 segundo con condiciones iniciales de ϵ 0=.3 y ϕ 0=189
Figura 29. Posiciones finales del rotor dentro de una chumacera hidrodinámica tipo corta en estado estable
para distintos números de Sommerfeld 91
Figura 30. Comparación gráfica de las posiciones de equilibrio (tabla 12 y tabla14)
Figura 31. Número de Sommerfeld Vs Excentricidad Para una chumacera corta
Figura 32. Número de Sommerfeld vs ángulo de equilibrio para una chumacera corta
Figura 33. Trayectoria del centro de un rotor en una chumacera hidrodinámica corta, para un S=10, L=1,
D=4, ω=120π95
Figura 34. Trayectoria del centro de un rotor en una chumacera hidrodinámica corta, para un S=0.001,
L=1, D=4, ω=120π95
L=1, D=4, ω =120 π
L=1, D=4, ω =120π
L=1, D=4, ω =120 π
L=1, D=4, ω =120π
L=1, D=4, ω =120 π
L=1, D=4, ω =120π
L=1, D=4, ω =120 π

Figura 42. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (ϵ_{pres}) e intensidades de presurización (fprt), cuando $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\leq \epsilon_{pres}$ \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt \approx 0, (gráfica para la tabla 16 y 17). 112 Figura 43. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades ($\varepsilon_{\text{pres}}$) e intensidades de presurización (fprt), cuando $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{\text{pres}} \ge .95$ en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt≈0, (gráfica para la tabla 18 y 19). 116 Figura 44. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (ε_{pres}) e intensidades de presurización (fprt), cuando $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq .95$ en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt≈0, (gráfica para la tabla 20 y 21). 120 Figura 45. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$. a=0, (L/D) = (1/4), fprt ≈ 0 , debido a que fprt≈0 se podría considerar el caso clásico de una chumacera hidrodinámica, (gráfica para la tabla 22 Figura 46. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$. a=0, (L/D) = (1/4), fprt ≈ 0 , debido a que fprt≈0 se podría considerar el caso clásico de una chumacera hidrodinámica, (gráfica para la tabla 22 Figura 47. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=1, (gráfica para la tabla 24 y Figura 48. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=1, (gráfica para la tabla 24 y Figura 49. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 50. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 51. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 52. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 53. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 54. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera "Regresar a índice" Figura 55. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 56. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 57. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 58. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=100......141 Figura 59. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 60. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 61. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 62. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 63. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 64. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 65. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 66. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 67. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 68. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 69. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 70. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 71. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera

Figura 72. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 73. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 74. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 75. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 76. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 77. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 78. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 79. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 80. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 81. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 82 Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 83. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 84. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 85. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 86. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera Figura 87. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera Figura 88. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera

"Regresar a índice"

Nomenclatura.

- V: Velocidad, m/s.
- $\sigma_{xy:}$ Esfuerzo tangencial, Pa.
- τ: Esfuerzo cortante, Pa.
- μ: Coeficiente de viscosidad dinámica, m/s.
- σ_{ij} : Tensión cortante, Pa.
- $\varepsilon_{ij:}$ Tención de compresión, Pa.
- δ_{ij} : Símbolo de Kroenecker's.
- λ : Coeficiente de viscosidad para fluidos que se pueden comprimir, m/s.
- Θ: Tasa de dilatación cúbica, °C
- ρ : Densidad, Kg/m³
- v: Coeficiente de viscosidad cinemática, m²/s
- M: Masa.
- L: Longitud.
- T: Tiempo.
- Θ : Coordenada radial.
- p: Presión, Pa.
- θ : Coordenada circunferencial medida a partir de la línea de centros, rad.
- z: Coordenada axial a lo largo de la chumacera, rad.
- φ : Ángulo de attitud (o de equilibrio) a partir de la línea de fuerza, rad.
- C_r : Claro radial, m.
- e: Excentricidad dimensional, m.
- ε : Excentricidad de radios adimensional, $\varepsilon = e / C_r$.
- R: Radio de la chumacera, m.
- μ : Viscosidad dinámica, Pa*s.
- ^{*h*} : Espesor de la película del fluido en forma adimensional, $h = H / C_r$.
- ω : Velocidad angular promedio del muñón ($\omega = \omega_1 + \omega_2$), rad/s.
- $\dot{\varphi}_{\pm} d\varphi/dt$

$$\dot{\hat{\xi}} = d\varepsilon/dt$$

L: longitud axial de la chumacera.

- *D*: Diámetro de la chumacera.
- \vec{M} : Vector de movilidad.
- M_{ε} : Componente del vector de movilidad en la dirección radial.
- M_{φ} : Componente del vector de movilidad en la dirección transversal.
- β : Ángulo de orientación del vector de movilidad.
- a= a: Posición adimensional, arbitraria y axial del puerto de inyección en la chumacera.
- γ: Ubicación angular del puerto de presurización.
- \overline{q}_{prt} : Intensidad de presión adimensional.

 ΔF_{pres} : Fuerza de presurización.

- O_{b:} Centro de la chumacera.
- Oj: Centro del muñón o rotor
- θ_{γ} : Ubicación angular del puerto de presurización en el sistema móvil.
- r: Coordenada radial a lo largo de la línea de centros.
- t: Coordenada tangencial a la línea de centros.
- \overline{Z} : Coordenada axial adimensional de la chumacera.
- \overline{p} : Presión adimensional.
- \overline{p}_{pres} : Presión adimensional en la película de aceite debida a la inyección de lubricante.
- \overline{p}_{ocv} : Presión adimensional de la solución de Ocvirk.
- \overline{p}_{prom} : Presión adimensional promedio.

 \overline{p}_{fict} : Presión ficticia.

- ε_{ocv} : Excentricidad de la solución de Ocvirk.
- φ_{Ocv} : Ángulo de equilibrio de la solución de Ocvirk.
- F_{dim} : Fuerza ficticia característica.
- D : Diámetro de la chumacera.
- \mathcal{E}_{pres} : Excentricidad en una chumacera presurizada.
- φ_{pres} : Ángulo de equilibrio (attitud) en una chumacera presurizada.
- ΔF_{pres} : Fuerza total de presurización.
- Δs : Área del puerto puntual de inyección.

Δp : Presión de inyección.

 $(\Delta \overline{p})_{prt}$: Presión adimensional en un puerto puntual de inyección.

 $\delta(x)$: Función Delta de Dirac.

 \overline{q}_{prt} : Presión adimensional en un puerto puntual respecto de la fuerza ficticia característica.

W: Peso total del sistema.

S: Número de Sommerfeld.

 $F_{X,Ocv}$: Componente vertical de la fuerza en la película de aceite en la solución de Ocvirk.

 $F_{Y,Ocv}$: Componente horizontal de la fuerza en la película de aceite en la solución de Ocvirk.

 $F_{X, pres}$: Componente vertical de la fuerza en la película de aceite debida a presurización.

 $F_{Y, pres}$: Componente horizontal de la fuerza en la película de aceite debida a la presurización.

 $F_{X,result}$: Fuerza resultante vertical en la película de aceite.

 $F_{Y,result}$: Fuerza resultante horizontal en la película de aceite.

 F_R : Componente radial de la fuerza de presión en la película de aceite.

 F_{T} : Componente tangencial de la fuerza de presión en la película de aceite.

 $\overline{F_R}$: Componente radial de la fuerza adimensional de presión en la película de aceite.

 $\overline{F_T}$: Componente tangencial de la fuerza adimensional de presión en la película de aceite.

 f_{prt} : Fuerza de presión adimensional en un puerto puntual de inyección respecto del peso.

 f_T : Componente tangencial de la fuerza adimensional de presión en la película de aceite.

 f_R : Componente radial de la fuerza adimensional de presión en la película de aceite.

 \hat{f}_{T} : Componente tangencial de la fuerza adimensional debida a la presurización externa.

 \hat{f}_{R} : Componente radial de la fuerza adimensional debida a la presurización externa.

 \hat{f}_x : Componente vertical de la fuerza adimensional debida a la presurización externa.

 \hat{f}_{Y} : Componente horizontal de la fuerza adimensional debida a la presurización externa.

 K_{ij} : Coeficientes de rigidez directos y acoplados en las direcciones radiales y tangenciales i = R, T, j = R, T.

 C_{ii} : Coeficientes de amortiguamiento directos y acoplados en las direcciones radiales y

tangenciales i = R, T, j = R, T.

 \overline{K}_{ij} : Coeficientes adimensionales de rigidez directos y acoplados en las direcciones horizontales y verticales i = x, y, j = x, y.

 \overline{C}_{ij} : Coeficientes adimensionales de amortiguamiento, directos y acoplados en las direcciones horizontales y verticales i = x, y, j = x, y.

 $\tilde{K}_{ij_{pres}}$: Coeficientes adimensionales de rigidez directos y acoplados en las direcciones

horizontales y verticales, debidos a la presurización externa. i = x, y, j = x, y.

 $\tilde{C}_{ij_{pres}}$: Coeficientes adimensionales de amortiguamiento, directos y acoplados en las direcciones horizontales y verticales, debidos a la presurización externa. i = x, y, j = x, y.

 \tilde{K}_{ii} : Coeficientes adimensionales de rigidez directos y acoplados en las direcciones

horizontales y verticales, debidos a las presurizaciones clásica y externa. i = x, y, j = x, y.

 \tilde{C}_{ij} : Coeficientes adimensionales de amortiguamiento, directos y acoplados en las direcciones horizontales y verticales, debidos a las presurizaciones clásica y externa. i = x, y, j = x, y.

 P^2 : Cuadrado de la velocidad de estabilidad.

 P_{umbral} : Velocidad umbral de estabilidad.

Introducción.

El desarrollo continuo de la industria petroquímica, eléctrica, aeronáutica y automotriz ha propiciado el desarrollo continuo de máquinas capases de absorber y desarrollar grandes cantidades de energía, en elementos cada vez más pequeños, con alta eficiencia y capases de soportar altas velocidades. Casos comunes son los turborreactores en las aeronaves supersónicas, los trenes de compresores de turbina logran velocidades de proceso asombrosas en las industrias petroquímicas, y las turbinas de vapor que producen mega watts de energía eléctrica para su comercialización y consumo. Todo esto ha conllevado el desarrollo de nuevas áreas de investigación, como lo es la rotodinámica [1,2,4].

La rotodinámica se centra en el estudio y comportamiento de la maquinaria rotativa (también llamada turbomaquinaria). En la cual el análisis de las altas velocidades, las altas cargas de inercia, los problemas con el giro del eje, la vibración y la inestabilidad en rotores, son algunos puntos de estudio en rotodinámica, que implican conocimiento en las áreas de: hidrodinámica, vibraciones y dinámica estructural [1].

El desarrollo científico y tecnológico en el estudio de las propiedades rotodinámicas, ha permitido de desarrollo de máquinas capases de alcanzar altas densidades de energía contantes, debido a las altas velocidades que el eje puede alcanzar y a las cargas inerciales que se generan, comparado con otros tipos de máquinas del mismo tamaño físico [1,2].

El problema principal en cualquier máquina rotodinámica son las vibraciones, las cuales son altamente influenciadas por los soportes hidrodinámicos (chumaceras hidrodinámicas), estos son utilizados comúnmente para la operación industrial de maquinaria rotatoria de altas velocidades y alta potencias, debido a que la película de aceite que se forma entre las partes en movimiento tiene un mejor comportamiento que un soporte de rodamientos convencional. Al presentar cambios la película de aceite, debido al deterioro, mal manejo, o por un mal diseño de la misma máquina, provoca inestabilidades causantes de: averías, desgastes prematuros, contactos entre el muñón y chumacera, pérdida parcial o total de la máquina, y en el peor de los escenarios podría provocar pérdidas humanas. Lo cual es muy costoso y evita que se desarrolle el máximo rendimiento de la máquina por no tomar en cuenta los requisitos rotodinámicos [1,2,10]. Diversos estudios han demostrado que la presurización externa de la película de lubricante permite modificar las características hidrodinámicas del soporte, permitiendo aumentar la estabilidad entre 25- 40%

[1,10]. Por lo tanto, el estudio del comportamiento de los soportes hidrodinámicos sometidos a cargas dinámicas y estáticas con y sin presurización, es un tema de alta importancia en el diseño de equipos rotodinámicos, y es la razón de este trabajo.

La teoría de la lubricación hidrodinámica aplicada al diseño y construcción de rodamientos y juntas, es una creación del siglo XX, pero se deriva de las ideas del siglo XIX, que consiste en la existencia de un fluido entre dos superficies sólidas en movimiento con deslizamiento relativo entre ambas. La acumulación gradual de experiencia y las aplicaciones prácticas dieron todo el crédito a las ideas de Osborne Reynolds en 1886, el cual obtuvo una expresión matemática la cual describe el comportamiento del campo de presión y que ha llegado a ser la base del análisis hidrodinámico en el funcionamiento de las chumaceras [1,4]. (Reynolds, O. (1886)" On the theory of lubrication and its Application to Mr. Beauchap Tower´s experiments including an experimental determination of the viscosity of olive oil" Phil, Trans, Roy. Soc. London. Vol. 177, Part I pp. 157-234). Debido a que la película del fluido lubricante que separa las superficies en movimiento tiene un comportamiento similar al de un resorte de comportamiento complejo, dicha película de lubricante presenta propiedades de amortiguamiento y rigidez: las cuales al ser alteradas se puede cambiar significativamente las velocidades críticas, la respuesta al desbalance y la posibilidad de reducir inestabilidades [1,2,4,8-10].

Una forma en que se podría determinar si un diseño es apto o cumple con las expectativas deseadas o simplemente como punto de partida para el diseño de un equipo rotodinámico, es por medio del método de movilidad que por su simplicidad resulta ser de muy apropiado para la solución de este tipo de problemas, este método permite obtener parámetros en un lapso corto de tiempo, si se le compara con métodos numéricos existentes, a resultando ser muy confiable en el estudio de la trayectoria del eje bajo distintas condiciones (carga, presurización, etc.)[3,5-7,11].

El análisis rotodinámico puede ayudar al diseño, manejo y mantenimiento de equipos rotodinámicos [2]. Y su correcta caracterización permite llevar a cabo los siguientes puntos:

1. Predicción de las velocidades críticas. Las velocidades a las que la vibración máxima se presenta, debido al desequilibrio del rotor, se pueden calcular a partir del diseño, para evitar que coincidan con la velocidad nominal de la máquina.

2. Determinación de las modificaciones de diseño para cambiar velocidades críticas. Siempre que los ingenieros de diseño no cumplan con precisión el objetivo 1, o sea necesario cambiar el rango

de velocidad de funcionamiento de una turbomáquina, pueden ser necesarias modificaciones de diseño para cambiar las velocidades críticas.

3. Predicción de las frecuencias naturales de vibración torsional. Este objetivo generalmente se aplica a todo el sistema del tren de transmisión en el que se emplea la turbomáquina (coincidan la excitación externa de la fuente propulsora o la carga acoplada con la alguna frecuencia natural durante el arranque o en velocidad nominal). En tal caso, podría ser deseable cambiar la frecuencia natural a un valor que tenga la menor excitación posible (en magnitud y / o duración de tiempo).

4. Calculo las masas y ubicaciones de corrección de equilibrio a partir de los datos medidos de vibración. Esta capacidad permite lograr un equilibrio del rotor "en el lugar", reduciendo así la amplitud de la vibración sincrónica.

5. Predicción amplitudes de vibraciones sincrónicas causadas por el desequilibrio del rotor. Este es uno de los objetivos más difíciles de lograr con precisión, ya que la amplitud del giro en el rotor depende de dos factores que son muy difíciles de medir: (a) la distribución del desequilibrio a lo largo del rotor, y (b) la amortiguación del sistema del soporte del rotor. Sin embargo, lo que se puede hacer es predecir los efectos relativos o el desequilibrio del rotor y la amortiguación del sistema en ubicaciones específicas.

6. predicción de las velocidades umbral y las frecuencias de vibración para la inestabilidad dinámica. Este objetivo es otro desafío en la actualidad, ya que algunas de las fuerzas desestabilizadoras aún no se entienden bien para un modelado matemático preciso. Sin embargo, la inestabilidad causada por los soportes del rotor; conocido como "látigo de aceite" se puede predecir con bastante precisión.

7.Determinación de las modificaciones de diseño para suprimir las inestabilidades dinámicas. Este objetivo se puede alcanzar más fácilmente que el objetivo 6, ya que las simulaciones por computadora pueden predecir el efecto estabilizador relativo de varias modificaciones de hardware, incluso si los modelos de fuerza desestabilizadora son solo aproximaciones.

Como se menciona en los puntos anteriores, el problema principal son las vibraciones que se presentan inevitablemente en cualquier máquina rotodinámica, siendo la razón e importancia del estudio de las características rotodinámicas, que se asemejan al análisis de un resorte complejo que presenta coeficientes de rigidez y amortiguamiento, estos son altamente influenciados por los soportes hidrodinámicos (chumaceras hidrodinámicas) [1-10].

Capítulo 1. Estado del Arte o Antecedentes.

1.1. Lubricación hidrodinámica.

En este apartado se Presentará una breve síntesis del progreso alcanzado en el aspecto hidrodinámico y su relación con las chumaceras hidrodinámicas

Osborne Reynolds público en 1886 un documento donde presentaba una teoría de lubricación hidrodinámica, en el que analizaba los resultados experimentales de B. Tower, basando su modelo matemático en una simplificación de las ecuaciones de Navier-Stokes. En la actualidad es considerado su trabajo como la base de la lubricación hidrodinámica moderna. La teoría de la lubricación presentada por O. Reynolds, no se usó hasta principios del siglo XX para calcular el empuje sobre un soporte de un rotor.

Antony George Maldon Michell obtuvo en 1904, la solución de la ecuación de Reynolds a partir de series truncadas para un rodamiento de carga de ancho finito. De esta manera, demostró que la capacidad de carga se ve disminuida debido a la fuga lateral del fluido.

Arnold Johannes Wilhelm Sommerfeld en 1904 utilizó un cambio juicioso de variables y logró obtener una solución analítica de la ecuación de Reynolds para cojinetes de eje infinitamente largos (dp / dz = 0). Sin embargo, las condiciones de contorno utilizadas no tienen en cuenta la ruptura de la película en el rodamiento y la distribución de presión obtenida es negativa en la zona divergente de la película; Esto no corresponde a la realidad física.

En 1914, Ludwig Karl Friedrich Gümbel, sugirió que solo la parte positiva de la distribución de la presión debería incluirse para el cálculo de la carga del rodamiento, omitiéndose la parte negativa; Por lo tanto, la carga calculada no es exacta.

Herbert Walker Swift en 1932 y luego W. Stieber en 1933 presentaron independientemente las condiciones límite para la salida de la película de aceite, que representan la realidad de una mejor manera: la película de aceite se rompe en la zona divergente de la película a lo largo de un límite determinado por las condiciones que, a lo largo de este límite, la presión tiene el valor de la presión saturada y el gradiente de presión es cero. Dichas condiciones concuerdan con la continuidad del flujo a la salida de la película y se denominan condiciones límite de Reynolds. En la actualidad se usan universalmente para calcular rodamientos con cargas constantes y sus condiciones.

Christopher propuso en 1941 un método numérico para resolver la ecuación de Reynolds con las condiciones límite de frontera.

En 1931, Albert Kingsbury obtuvo una solución aproximada de la ecuación de Reynolds utilizando una analogía que existe entre la ecuación de Reynolds y la ecuación que describe la ley de variación de la tensión eléctrica en un medio resistente.

Fred William Ocvirk en 1953 presentó un método aproximado para rodamientos cortos. Propuso despreciar el gradiente de presión circunferencial en comparación con el axial en la ecuación de Reynolds. La solución es analítica y utiliza las condiciones de contorno de Gümbel, los resultados son prácticamente exactos para los cojinetes del muñón que tienen una relación L / D (ancho del cojinete sobre el diámetro) menor que 0 = .25 y los cálculos se simplifican considerablemente.

Las primeras soluciones numéricas fueron propuestas por Cameron y Wood en 1949 y más tarde por Pinkus, Raymondi y Boyd en 1958.

Kingsbury, en 1933, realizó el primer enfoque teórico de los efectos térmicos en la lubricación hidrodinámica, pero es Duncan Dowson quien, en 1962, fue el primero en presentar la ecuación general de la lubricación termohidrodinámica.

M.Couette en 1890 fue el primero en dar un acercamiento en el uso de fluidos con baja viscosidad como lubricantes, así como el aumento de la inclinación y el tamaño de los cojinetes, producen cambios en el régimen de flujo en la película de lubricante, esas consideraciones las uso para el flujo entre dos cilindros coaxiales. Estas consideraciones fueron analizadas por G.I. Taylor, en 1923, esas mismas consideraciones fueron enfatizadas hacía el uso en rotores por Donald Wilcock en 1950. El estudio de tales fenómenos no laminares (vórtices y turbulencias de Thaylor) se realizó recientemente. Sin embargo, aún quedan muchos problemas por resolver para ciertas aplicaciones.

En 1905, Michell presentó, en Australia la primera patente sobre cojinete de almohadilla basculante. Este diseño permite que las almohadillas tomen la inclinación adecuada correspondiente a una capacidad óptima de carga de la almohadilla, siempre que la posición del pivote se elija correctamente.

Kingsbury en 1900 simultáneamente en Estados Unidos inventó el cojinete de la almohadilla basculante. Solicitó una patente solo en 1907 y tuvo que esperar hasta 1910 para registrarse. En la actualidad es tendencia su uso y fabricación a pesar de ser más compleja y de altos costos, pero tienen excelentes características de funcionamiento (capacidad de carga y estabilidad) y se consideran los mejores cojinetes.

John William Strutt and barón Rayleigh describieron una almohadilla con escalones, que consta de dos partes paralelas pero desplazadas, Mostrando que este tipo de almohadilla exhibe una capacidad de carga mayor para un espesor de película mínimo comparado con cualquier tipo de almohadilla conocida.

En 1917, Lord Rayleigh fue el primero en calcular la carga y el par de fricción de una almohadilla de empuje hidrostático.

Hirn enfatizó en el uso de aire y otros gases como lubricantes antes de 1854. A pesar de los estudios realizados y del diseño realizado por Kingsbury en 1926 (así como las Patentes de Ferranti en 1904). Solo en la segunda mitad del siglo XX fue cuando generalizó el uso de rodamientos de gas. Dichos diseños pueden ser aerostáticos o aerodinámicos y se utilizan para mecanismos de alta precisión (metrología) o para altas velocidades (taladros dentales, giroscopios, turbinas ...); se limitan a cargas ligeras.

Heinrich Rudolph Herz en 1881 estudió el contacto entre un cilindro con un plano y el de una esfera con un plano. su teoría analítica calculó tensiones y deformaciones en el contacto sin fricción. Esta teoría, conocida como la teoría de Hertz, no puede describir completamente el funcionamiento de un contacto lubricado, ya que no se tiene en cuenta el efecto del fluido.

En 1916, Martin publicó un estudio sobre el contacto entre un cilindro y un plano en un movimiento bidimensional, suponiendo superficies rígidas y una viscosidad constante del lubricante. La carga es considerablemente menor que la dada por los resultados experimentales de su tiempo.

En 1945, Gatcombe y Grubin introdujeron la dependencia de la viscosidad y la presión del aceite, enfatizada por las mediciones de Hersey. Sus resultados mostraron que la presión en la película tiende hacia el infinito, lo que es físicamente imposible.

El primer enfoque del problema elastohidrodinámico fue realizado por Grubin y Vinogradova en 1949. Este análisis consideró la deformación elástica de la superficie, calculada según la teoría de Hertz, así como el aumento de la viscosidad del lubricante con la presión. La ecuación de Reynolds y las ecuaciones de la elasticidad se resolvieron de manera desacoplada, pero las hipótesis juiciosas les permitieron obtener una solución del problema, para calcular el espesor mínimo de la película, el valor obtenido no está lejos del exacto.

La primera solución completa del problema elastohidrodinámico fue propuesta por Dowson y Higginson en 1959; Los autores utilizaron una solución numérica iterativa que permite acoplar el <u>"Regresar a índice"</u> cálculo de las deformaciones elásticas a la resolución de la ecuación de Reynolds., El uso de la computadora y el desarrollo de técnicas numéricas permitieron el cálculo preciso de este tipo de contacto. El efecto de rugosidad y la operación principalmente no newtoniana de lubricantes en un contacto de hertzian siguen siendo objeto de muchos proyectos de investigación.

Rychard Striebeck en 1902 obtuvo una curva que proporciona la fricción versus espesor de película, donde pueden identificarse zonas específicas a un tipo de lubricación según el nivel de presión establecido en el contacto.

Holm en 1983 demostró que las asperezas de contacto se deforman plásticamente e incluso pueden soldarse, lograron avances importantes; por lo tanto, la fuerza de fricción está directamente relacionada con los esfuerzos cortantes de las uniones formadas de esta manera.

Bowden y Tabor en 1939 señalaron la influencia de los materiales suave y su efecto en las deformaciones plástica.

Ernst y Merchant (1940) mostraron que tanto las deformaciones de la aspereza deben tenerse en cuenta al calcular la fricción.

Bowden y Tabor (1950) y Kraghelskii (1965) definieron el área real de contacto. Señalando que las superficies en contacto nunca son geométricamente perfectas; la carga se distribuye en un pequeño número de picos sujetos a deformación plástica. El área real de contacto es directamente una función de la carga aplicada e independiente del área aparente de contacto.

Rabinowicz, en 1965, agregó la noción de energía de adhesión de las superficies para especificar el valor de la fricción.

1.2. Rotodinámica y sus Antecedentes.

La rotodinámica es una rama especializada de la mecánica aplicada, donde se tienen contribuciones de diferentes áreas como lo es el área de tribología (lubricación en soportes hidrodinámicos), análisis estructural (vibraciones). Las contribuciones a lo largo de la historia han sido tanto analíticas como experimentales y están enfocados en el análisis del rotor el cual es soportado sobre un cojinete hidrodinámico y que es el lugar principal donde se presentan diversos fenómenos dinámicos que pueden ser causa de inestabilidades y vibraciones, conforme a [1,4,10] los primeros tratados relacionados con el análisis rotodinámico relevantes son:

El tratado sistemático escrito ´por Lord Rayleigh, quien formalizo la idea de funciones normales, e introdujo sistemáticamente la energía y los métodos aproximados en el análisis de vibraciones, sin resolver aun las ecuaciones diferenciales resultantes.

Se ha considerado la primera investigación en maquinaria rotativa el trabajo presentado por W.J.M. Ranking quien en 1869 postulo que ninguna máquina rotativa podría operar a una velocidad mayor de la primera velocidad critica, lo cual es erróneo debido a que en el modelo de Ranking se utiliza erróneamente la segunda ley de Newton.

En 1895, Durkerley público un trabajo experimental donde se describían las velocidades supercríticas. Mientras que en 1900 Gustaf de Laval realizó experimentos con una turbina de vapor, demostrando que era posible operar por arriba de la primera velocidad critica. Contradiciendo en la práctica las predicciones de Rankie.

En 1916, Kerr público un documento que demuestra evidencia experimental de una segunda velocidad critica. En cuanto al problema analítico de vibración rotacional, para poder demostrar que se puede operar a una velocidad superior a la primera velocidad critica, fue resuelto ese mismo año por: A. Foppl, demostrando analíticamente el trabajo experimental de DeLaval y obteniendo conclusiones similares a alas de Durkerley.

Henry Jeffcott en 1919, publico un artículo que confirma la existencia de velocidades estables supercríticas, que fueron enfocadas en técnicas de modelización de inestabilidades culminando en la obra de Prohl Myklestad, desarrollándose la matriz de transferencia que es utilizado en el diseño de máquinas rotatorias, permitiendo conocer frecuencias. Modos y repuestas debido al desbalance en sistemas de rotores. Entre las aportaciones más significativas entre Jeffcott y Delaval es el modelo fundamental de un rotor.

En la década de 1920, a nivel industrial se diseñaron turbinas capases de operar con cargas sustancialmente altas y a velocidades por arriba de la velocidad critica fundamental, todo esto conllevo a nuevos retos y problemas que son considerados en rotodinámica moderna, los cuales fueron estudiados por: B.L. Newkirk y A.T. Kimball. Los efectos giroscópicos fueron introducidos en las ecuaciones de movimiento expuestas por Stodola en 1924 y cuantificados por el mismo Stodola, B.L. Newkirk y H.D. Taylor.

En 1948, Green continuo con trabajos relacionados con el efecto giroscópico en un rotor de 4 grados de libertad.

Booker y Ruhl en 1972 fueron los primeros en usar el método del elemento finito (FEA) en el área de rotodinámica. Nelson y MCVAUGH en 1976 lo generalizaron incluyendo el momento giroscópico, la inercia rotacional y la fuerza axial.

Actualmente se utilizan análisis basados en elemento finito, las bases de la idea de discretización continua, involucra los métodos de Holzer, Guembel, Tolle y Van Den Dungen, así como el método de matrices de transferencia.

1.3. Estudios contemporáneos en soportes hidrodinámicos.

En la tabla 1, se presentan los estudios más significativos sobre el área de lubricación hidrodinámica, rotodinámica, así como métodos alternativos para solución de la Ecuación de Reynolds.

Titulo	Autores	Contribución	Comentarios
Influence of	Chu Zhang.	Analiza el efecto del barniz	El artículo se centra en
Varnish on		(suciedad adherida en la cara	el efecto que se tiene
Bearing	Jian-Gang	interna del rodamiento cerca de la	en bajas y altas
Performance	Yang.	zona de carga) sobre las vibraciones	revoluciones debido a
and Vibration of		y eficiencia en un soporte	suciedad adherida en
Rotating	Shi Liu.	hidrodinámico, concluyendo que	el rodamiento cerda de
Machinery [14].		tiene un efecto significativo a bajas	la zona de carga y su
	Qing-Shui	revoluciones modificando su	efecto según su
	Gao.	rendimiento, reduciendo su	posición geométrica.
		capacidad de carga, disminución del	Involucra el efecto del
	Yi Yang.	espesor mínimo, aumento en	barniz como un efecto
		temperatura y en la presión de la	de perturbación en
		película de aceite, siendo estos	forma de
		efectos dañinos para el rodamiento	presurización.
		y su efecto es más significativo si se	
		presenta barniz en la dirección	
		horizontal que vertical.	

Tabla 1. Estudios contemporáneos referentes a soportes hidrodinámicos.

Application of	Alexey V.	Basado en las redes neuronales de	Este trabajo menciona
Artificial Neural	Kornaev.	dos capas de avance, se han	ser más eficaz en
Networks to		desarrollado modelos numéricos	comparación de
Calculation of	Nickolay V.	para calcular las fuerzas de reacción	métodos numéricos de
Oil Film	Kornaev.	de la película de aceite.	linealización los
Reaction Forces			cuales presenta sobre
and Dynamics of	Elena P.	Se ha realizado una comparación de	estimaciones, resulta
Rotors on	Kornaeva.	los enfoques lineales y no lineales,	ser hasta un 3 veces
Journal Bearings		así como la precisión y el	más eficaz, pero tiene
[15].	Leonid A.	rendimiento del enfoque de red	problemas en los
	Savin.	neuronal contra enfoques	primeros instantes de
		convencionales de la dinámica del	simulación
		rotor.	presentando sobre-
			impulsos.
			No incluye efectos
			como la presurización
			externa.
Experimental	Xiaoyan Ye.	Basándose en un prototipo de	Una de las razones por
Research of		bomba de alta presión con 4	las que la película de
Journal Orbit for	Jing Wang.	estabilizadores. La prueba se realizó	lubricación
Water-		para estudiar la órbita del eje y la	hidrodinámica se
Lubricated	Desheng	distribución de presión	formó cerca de la
Bearing [16].	Zhang.	circunferencial del soporte del eje.	velocidad nominal es
		Llegando a la conclusión que la	por la baja viscosidad
	Lanqian Hu.	órbita del eje y la presión	del agua, sumado a que
		circunferencial del cojinete del eje	su viscosidad no
	Xunan She.	son muy estables cuando el radio de	aumenta
		separación es de 0.05 mm, la	sustancialmente ante
		velocidad de revolución es	la variación de
		3000 r / min y puede ser estable	presión.
		cuando la relación L/D>1.	

			No hubo
			comprobación
			analítica en su artículo.
Investigación	Daniel	En esta tesis se aborda el análisis	El análisis que realizó
del	Eduardo	dinámico de una chumacera por	fue en estado de
comportamiento	Rivera	medio del cálculo de la velocidad	equilibrio y no
de la chumacera	Arreola.	umbral de estabilidad, añadiendo	determino la
corta con		presurización simétrica a 90° y	trayectoria del eje en
puertos de		horizontalmente y haciendo la	estado transitorio.
presurización		aproximación analítica mediante la	Pero introduce el
[10].		función especial Delta de Dirac para	análisis de
		chumaceras cortas	presurización que se
			utilizara en esta tesis
			de maestría
The Dynamic	Jianfei Yao.	Este trabajo analiza el	En este trabajo aporta
Analysis of		comportamiento dinámico lineal y	teoría de trayectorias
Two-Rotor	Jinji Gao.	no lineal de un sistema de dos	de eje a través del
Three-Bearing		rotores con cuatro discos	mapa de Poicare, y
System [18].	Ya Zhang.	soportados por tres soportes	como se influye un
		elípticos hidrodinámicos. Se realiza	sistema acolado a un
	Weimin	el análisis utilizando el método de	soporte
	Wang.	elementos finitos, incluyendo el	hidrodinámico.
		efecto de corte y efecto giroscópico.	
		Señalando la variación de velocidad	
		y cómo influye en los coeficientes	
		de rigidez y amortiguamiento.	
		Concluyendo que el sistema de	
		acoplamiento flexible es más	
		complicado que el del acoplamiento	
		rígido y el movimiento del sistema	
		generalmente contiene los	
		componentes armónicos múltiples.	

Performance	Sandeep Soni.	En este trabajo realiza el análisis de	El análisis que realizó
Analysis of		rendimiento en estado estacionario	solo fue efectuado en
Short Journal	D. P.	de un soporte hidrodinámico	estado estable, es
Bearing under	Vakharia.	circular corta (R/D=5). Se llevó a	necesario tomar en
Thin Film		cabo utilizando el modelo de	cuenta el efecto que se
Lubrication		corrección de viscosidad en	tendría en estado
[19].		condiciones de lubricación de	transitorio y añadir el
		película delgada, utilizando la	efecto de
		condición límite de Gumbel,	presurización externa.
		llegando a la conclusión de que la	
		eficiencia es mayor cuando el	
		grosor de la película de lubricante es	
		mínimo en un soporte corto,	
		abriendo la posibilidad para análisis	
		futuros en películas de lubricante a	
		nivel nano-escala.	
Numerical	H. Rasooli	En este artículo analiza las	Este método numérico
solution of	Shooroki.	características estáticas de los	sigue presentando
Reynold's		sistemas de soportes de gas no	margen de error, pero
equation	R. Rashidi	circulares de dos lóbulos, tres	su aportación radica en
governing	Meybodi.	lóbulos y cuatro lóbulos, los cuales	la comparación de 3
noncircular gas		son estudiados en detalle con un	modelos de
bearing system	S. M.	método llamado funciones de base	chumaceras no
using radial	Karbassi.	radial (RBF), que es un método	circulares, no incluye
basis function		numérico que tiene como cualidad	efecto de la
[20].	G. B.	encontrar la posición de equilibrio	presurización externa.
	Loghmani.	del rotor sin utilizar el método de	
		prueba y error.	
Mathematical	Hui-Hui Feng.	La metodología que utiliza, emplea	En este artículo
Model and		métodos numéricos como lo es el de	combina excentricidad
Analysis of	Chun-Dong	diferencia finita y el método de	del eje y su inclinación
	Xu.	perturbación lineal. Los cuales se	y como estas

"Regresar a índice"

the Water-		utilizan para calcular los campos de	repercuten según su
Lubricated	Jie Wan.	presión de cero y primer orden para	magnitud, confirma el
Hydrostatic		obtener los coeficientes estáticos y	uso de lubricación con
Journal Bearings		dinámicos. Los resultados sugieren	agua y el cómo es
considering the		que cuando la relación de	conveniente a grandes
Translational		inclinación es menor que 0.4 o la	velocidades.
and Tilting		relación de excentricidad es menor	Comparado con datos
Motions [21].		que 0.1, las características estáticas	experimentales, este
		y dinámicas son relativamente	método presenta sobre
		insensibles a las relaciones de	estimaciones.
		inclinación y excentricidad; sin	
		embargo, para relaciones de	
		inclinación o excentricidad más	
		grandes, los efectos de inclinación y	
		excéntricos deben considerarse	
		completamente.	
0			
Caracterizacion	Ignacio	Se presenta un método alternativo	Tiene gran
dinámica De	Ignacio Ramírez	Se presenta un método alternativo para caracterizar una chumacera	Tiene gran importancia para la
dinámica De Chumaceras	Ignacio Ramírez Vargas.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una	Tiene gran importancia para la adaptación en
dinámica De Chumaceras Hidrodinámicas	Ignacio Ramírez Vargas. Alberto	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón	Tienegranimportanciaparalaadaptaciónenchumacerasde
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante	Ignacio Ramírez Vargas. Alberto Antonio	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones	Ignacio Ramírez Vargas. Alberto Antonio García.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,ymuestrala
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,ymuestralapresurizaciónquese
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,ymuestrala teoríapresurizaciónqueseutilizaraen estatesis.
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,ymuestrala teoríapresurizaciónqueseutilizaraen estatesis.
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el	Tiene gran importancia para la adaptación en chumaceras de diferentes longitudes, y muestra la teoría de presurización que se utilizara en esta tesis.
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el presurizado.	Tiene gran importancia para la adaptación en chumaceras de diferentes longitudes, y muestra la teoría de presurización que se utilizara en esta tesis.
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22].	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez. Antonio-	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el presurizado. Este artículo presenta una	Tiene gran importancia para la adaptación en chumaceras de diferentes longitudes, y muestra la teoría de presurización que se utilizara en esta tesis. Muestra la aplicación
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22]. Investigación numérica de las	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez. Antonio- García A.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el presurizado. Este artículo presenta una investigación del efecto de	Tienegranimportanciaparalaadaptaciónenchumacerasdediferenteslongitudes,ymuestrala teoríaymuestrala teoríapresurizaciónqueseutilizaraen estatesis.Muestrala aplicacióndeunmétodo
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22]. Investigación numérica de las condiciones de	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez. Antonio- García A.	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el presurizado. Este artículo presenta una investigación del efecto de desalineación angular del eje por el	Tiene gran importancia para la adaptación en chumaceras de diferentes longitudes, y muestra la teoría de presurización que se utilizara en esta tesis. Muestra la aplicación de un método numérico para la
Caracterización dinámica De Chumaceras Hidrodinámicas Mediante Perturbaciones [22]. Investigación numérica de las condiciones de lubricación en	Ignacio Ramírez Vargas. Alberto Antonio García. Carlos De La Rosa Gutiérrez. Antonio- García A. Linares-	Se presenta un método alternativo para caracterizar una chumacera hidrodinámica, se realiza una perturbación en el centro del muñón que permite encontrar presiones parciales, con la intención de poder manipularlas para determinar los coeficientes dinámicos de rigidez y amortiguamiento. Tanto en el modelo clásico como en el presurizado. Este artículo presenta una investigación del efecto de desalineación angular del eje por el peso y por la flexión del rotor y	Tiene gran importancia para la adaptación en chumaceras de diferentes longitudes, y muestra la teoría de presurización que se utilizara en esta tesis. Muestra la aplicación de un método numérico para la desalineación angular,

"Regresar a índice"
hidrodinámicas		rotodinámicos. Implica una	el cual aún presenta
con el efecto del	Arias-Montiel	expresión para representar la	sobreestimación.
desalineamiento	M.	modificación que sufre la película	
en el eje [23].		de lubricante a causa de la	
		desalineación. Dando como	
		resultado el incremento de la	
		presión máxima y el flujo axial del	
		lubricante y cambios en la fricción	
		viscosa.	
Mobility	Tao He.	En este trabajo presenta el método	Su tiempo de
Method Applied		de movilidad como un método	simulación es
to Calculate the	Xiqun Lu.	alternativo para la predicción de la	demasiado corto y no
Lubrication		trayectoria y su comportamiento en	logra prever el Ángulo
Properties of	Jingzhi Zhu.	estado dinámico, así como efectos	final de equilibrio y su
Bearing under		que en estado estable no se	excentricidad en
Dynamic Loads		presentan o se prevén.	estado estable debido a
[24].			que la fuerza de
			excitación es variable.
Chaotic and	Cheng-	Este artículo estudia los	En este trabajo
Subharmonic	ChiWang.	comportamientos dinámicos no	muestran trayectorias
Motion Analysis		lineales, aplicando un método	del eje mediante el
of Floating Ring	Her-Terng	numérico híbrido que combina el	mapa de Poicare que
Gas Bearing	Yau.	método de transformación	sirven de comparación
System by		diferencial y el método de	con el método de
Hybrid	Chi-Chang	diferencia finita utilizado para	movilidad.
Numerical	Wang.	calcular la distribución de presión	
Method [25].		del sistema FRGB y las órbitas del	
		rotor.	
Theoretical	Ulrich	Basándose en el modelo de rotor	Este artículo tiene la
Vibration	Werner.	dinámico simplificado. Se muestra	cualidad de dar un
Regarding		que el rotor sufre restricciones por	enfoque al análisis de
Excitation due to		la geometría del soporte que es	vibraciones y como la

"Regresar a índice"

Elliptical Shaft		elíptica conduciendo a restricciones	geometría del soporte
Journals in		cinemáticas.	no circular influye en
Sleeve Bearings			los coeficientes
0I ElectricalMotors			rotodinámicos
[26].			Totoumunicos.
Dynamic	Cai-Wan	Los resultados presentados en este	El uso de diagramas de
Analysis of a	Chang-Jian	estudio proporcionan algunas ideas	fase, espectros de
Hybrid Squeeze		útiles sobre el diseño y desarrollo de	potencia, mapas de
Film Damper		un rodamiento para maquinaria	Poincar´e, diagramas
Mounted Rub-		rotativa que opera en alta velocidad	de bifurcación, sirven
Impact Rotor-		de rotación y regímenes altamente	de comparación con el
Stator System		no lineales soporta por un	método de movilidad.
[27].		amortiguador híbrido de película	
		compacta (HSFD).	
Análisis	Valery R.	Por métodos analíticos y por la	Su metodología y sus
dinámico de	Nossova.	solución de nuevos modelos	resultados son en
estabilidad de un		matemáticos que representan el	estado estable, su
cojinete	D.E. Rivera	comportamiento dinámico del	solución es analítica
presurizado con	Arreola.	cojinete, se obtiene la máxima	por lo que es más
inyección lateral		velocidad de operación que puede	exacta que por
de lubricante	J.C. Gómez	alcanzar el rotor antes de que ocurra	métodos numéricos.
[28].	Mancilla.	la inestabilidad. Se determina que	
		puerto es el más ideal para utilizar	
	J.A. Meda	obteniendo importantes resultados	
	Campaña.	como es la gran influencia que	
		causa la relación de la excentricidad	
	I. Ramírez	con la presurización externa y la	
	Vargas.	repercusión que involucra la	
		ubicación del puerto de inyección	
		de lubricante.	
Performance of	J. Sharana	Este documento tiene como	El estudio se realizó
an Orifice	Basavaraja.	objetivo estudiar el rendimiento de	comparando una

Compensated		un sistema de un soporte de eje	chumacera circular
Two-Lobe	Satish C.	híbrido con entrada de dos puntos	con una de no circulas
Hole-Entry	Sharma.	de presurización simétricos,	(two-lubo),
Hybrid Journal		mencionado que se tienen	demostrando que la
Bearing [29].	S. C. Jain.	variaciones de 30 a 50% en los	geometría del soporte
		coeficientes rotodinámicos según la	puede cambiar las
		posición de los puntos de	propiedades
		alimentación.	dinámicas.
Teoría de	Ignacio	Este trabajo presenta una teoría de	La teoría de
chumaceras	Ramírez	chumaceras presurizadas donde se	presurización de
presurizadas con	Vargas.	calculan los parámetros básicos	chumaceras es la base
puertos		rotodinámicos y expresa una nueva	de este trabajo y se
puntuales: caso		teoría de presurización para	realizó en estado
de la chumacera		modificar los parámetros	estable. Esta teoría de
corta [1].		rotodinámicos artificialmente.	presurización se
		Siendo uno de los primeros trabajos	tomará de base para los
		en obtener coeficientes	nuevos puntos de
		rotodinámicos bajo estas	equilibrio que se
		condiciones de manera analítica y	estudiaran en esta
		no numérica.	tesis.
Journal Bearings	Paulo Flores.	Este artículo aborda lo que es el	No aborda temas como
Subjected to		método de movilidad en una	presurización ni
Dynamic Loads:	JC Pimenta	chumacera hidrodinámica que está	tampoco coeficientes
The Analytical	Claro.	bajo cargas dinámicas, presentando	rotodinámicos y su
Mobility		la trayectoria del eje y la variación	tiempo de simulación e
Method [5].	Jorge	de excentricidad conforme el	muy pequeño lo cual
	Ambrósio.	tiempo.	no se logra tener una
			comprensión muy
			clara de la importancia
			del método.
Dynamically	Nathan	En este trabajo de tesis se realiza el	Muestra el método de
loaded self-	Mayer.	análisis de desalineación en	movilidad como una

aligning journal		chumaceras de distintas relaciones	alternativa a métodos
bearings: A		L/D utilizando el método de	numéricos que pueden
Mobility method		movilidad para caracterizar a la	requerir una gran carga
approach [11].		chumacera, poder determinar su	computacional para
		comportamiento.	estos casos de
		1	desalineación.
Calculation of	Omidreza	Por métodos numéricos se analiza el	El análisis que realiza
Iournal Bearing	Ebrat	efecto de la deformación estructural	es numérico v
Dynamic	Loiut.	debido al efecto de las cargas sobre	solamente estudia el
Characteristics	Zissimos n	la película de lubricante, se analiza	modelo clásico (sin
Including	Mourelatos	al modelo clásico de la chumacera	presurizar) pero su
Loumol	Wiourelatos.	er modelo clasico de la chumacera	presurizar), pero su
		extendiendolo con la deformación	aporte radica en anadir
Misalignment	Nickolas	estructural del soporte y su	el efecto de las
and Bearing	Vlahopoulos.	influencia en su capacidad de carga.	deformaciones.
Structural	Kumar	El análisis consistió en la	
Deformation	Vaidyanathan.	discretización de la película de	
[31].		aceite, utilizando una malla	
		rectangular bidimensional de	
		diferencia finita.	
Comparison of	Biao Yu.	Como alternativa practica el	Este estudio propone
Mobility		método de movilidad sigue siendo	una alternativa al
Method and	Jerzy T.	la mejor opción, pero casos de	método de movilidad,
Conservation	Sawicki.	sistemas acoplados cigüeñal- biela	señalando que es más
Method in a		es necesario aumentar el factor de	eficiente v más
Study of		seguridad en el diseño o sustituir el	preciso, sin embargo.
Dynamically		método de movilidad por el método	su anlicación es más
Bearings [7]		de conservación de masa	compleia (método de
		de conservación de masa.	compreja. (metodo de
			conservación de
~			masa).
Stability of a	B.C.	Presenta una de las primeras	Este artículo solo
Rigid Rotor	Majumdar.	aplicaciones de las ecuaciones de	describe el caso
Supported		movimiento para determinar la	clásico de un soporte

<u>"Regresar a índice"</u> 17

on Oil-Film	D.E. brewe.	trayectoria del eje bajo fuerzas hidrodinámico y no
Journal Bearings		externas, as ecuaciones de calcula coeficientes de
Under Dynamic		movimiento se resuelven mediante rigidez y
Load [32].		el método Runge-Kutta de cuarto amortiguamiento y no
		orden para predecir el añade los efectos de
		comportamiento transitorio del presurización.
		rotor.

Capítulo 2. Marco Teórico.

2.1. Tribología.

La tribología incluye todos los aspectos relacionados con la lubricación, fricción y sus usos, su objetivo es resolver los problemas prácticos relacionados con la interacción en sistemas mecánicos, así como en seres vivos, permitiendo aclarar aspectos estáticos y dinámicos entre 2 cuerpos, entre los cuales existe un contacto.

Algunos de los fenómenos de estudio que abarca el área de tribología son 3 fenómenos principales: la fricción, que es la fuerza que se opone al movimiento entre 2 superficies en contacto, el desgaste como efecto de la fricción y la lubricación como medio para evitar el desgaste [10].

La importancia del estudio en estas áreas es de alta importancia en el área de la mecánica, debido al gran número de equipos y máquinas que cuentan con partes deslizantes, por lo que es necesario establecer y medir los niveles de desgaste respecto a la fricción, para buscar la manera de atenuarlos para un óptimo desempeño. Estos fenómenos representan pérdidas importantes como se muestra en los siguientes puntos [4]:

- Fricción: Es la fuente principal de perdidas energéticas en estados unidos, que haciende al 11% de la producción total en ese país, conforme a datos de la sociedad americana de ingeniería mecánica.
- Desgaste: la durabilidad en una máquina está altamente influenciada por la cantidad de desgates que esta sufre por cada Ciclo de trabajo, lo cual puede presentar fallas debido al comportamiento de las superficies de contacto. En países como Francia, V.A.M.A.S. (Versailles Agreement for Materials and standards) ha evaluado que las pérdidas por desgaste equivalen al 2% del producto bruto nacional.
- Inhabilitación: los costos de inhabilitación de una máquina debido a la falla de un componente son de alta importancia. En el fallo de un rodamiento puede causar la inhabilitación de una unidad generadora de energía eléctrica, causando apagones en sectores de la población y pérdidas millonarias directa e indirectamente.

En aspectos industriales el área de tribología tiene tres dominios principales [4,10,]:

 Lubricación a baja presión o lubricación hidrodinámica, se presenta cuando una película de aceite forma un colchón de aceite que mantiene una separación entre las piezas, lo bastante gruesas para evitar el contacto entre ambas superficies., involucrando rotores y soportes de empuje, etc.

- 2) Lubricación a alta presión o lubricación elastohidrodinámica, considera la deformación de la superficie y la variación de la viscosidad debido a la presión, en términos generales se puede obtener el comportamiento del lubricante sometido a cargas y la forma en que este afecta a la fricción, involucrada en engranajes, rodamientos, etc.
- Fricción no lubricada, se presenta entre 2 superficies sin ningún aditivo o fluido que mantenga separadas las 2 superficies, involucrada en cojinetes y componentes secos, etc.

Cada dominio se trata de herramientas específicas y pocos especialistas tienen la misma experiencia para todos ellos. Los tres puntos anteriores sirven de herramientas para poder diseñar componentes mecánicos, predecir la capacidad de carga de estos componentes, valores de fricción, ocasionalmente tasas de desgaste y fallas en la superficie.

2.2. Viscosidad en lubricantes.

De todas las propiedades físicas y químicas que caracterizan un lubricante, la más importante para tomar en cuenta al momento de lubricar, es la viscosidad, siempre y cuando el régimen de operación sea hidrodinámico. La viscosidad es la que determina las perdidas por fricción, la capacidad de carga y el grosor de la película de aceite.

Conforme a la norma francesa NF T 60-100 de noviembre de 1959: La viscosidad de un líquido es la propiedad resultante, de la resistencia puesta por sus moléculas a una fuerza que tiende a desplazarlas al deslizarse. Una característica de la viscosidad de un fluido, es su capacidad para poder asegurar una película constante de lubricación bajo condiciones de velocidad, carga y temperatura.

Figura 1. Distribución de velocidad.

Por lo tanto: la viscosidad de un fluido es la resistencia opuesta que ejerce un fluido a cualquier deslizamiento interno de sus moléculas entre una superficie con velocidad (V) y una superficie en

reposo (Fig. 1). Las diversas (películas) de fluido entre las dos superficies generalmente se desplazarán con diferentes velocidades (v) que varían entre 0 y V, si a cierta distancia (y) de la superficie en reposo, la velocidad de las películas fluidas es v + dv, cuando la distancia aumenta con dy; entonces, el esfuerzo tangencial σ_{xy} , denominado generalmente esfuerzo cortante y denotado por τ , viene dado por [4]:

$$\tau = \sigma_{xy} = \mu \frac{dv}{dy} \tag{2.1}$$

Donde µ es el coeficiente de viscosidad dinámica y este coeficiente es característico de un fluido.

La viscosidad dinámica: es el coeficiente de proporcionalidad entre el esfuerzo cortante y el gradiente de velocidad, aplicable para una gran cantidad de fluidos, llamados fluidos newtonianos. Uno encuentra entre ellos agua, así como numerosos aceites lubricantes en flujo laminar. La presencia de macromoléculas o condiciones severas de operación conducen a la invalidación de la relación de proporcionalidad mencionada: (fluido no newtoniano).

En términos generales, para un fluido newtoniano, la relación que existe entre la tensión cortante σ_{ij} con la tención de compresión ε_{ij} , puede escribirse como [4]:

$$\sigma_{ij} = (-p + \lambda \Theta) \,\delta_{ij} + 2\mu \epsilon_{ij} \tag{2.2}$$

Donde p es la presión, Θ es la tasa de dilatación cúbica, δ_{ij} el símbolo de Kroenecker's, μ y λ dos coeficientes de viscosidad. Para un fluido incompresible $\lambda = 0$, el segundo coeficiente de viscosidad λ no interviene.

2.2.1 Unidades de la viscosidad.

La ecuación dimensional de la viscosidad dinámica µ resulta directamente de la relación de (2.1) como [4]:

$$\mu = ML^{-1}T^{-1}$$
 (2.3)

En mecánica de fluidos se introduce con mucha frecuencia en los cálculos la cantidad $v=\mu/\rho$, la relación entre la viscosidad dinámica y la densidad; v se llama coeficiente de viscosidad cinemática. Sus dimensiones son [4]:

(2.4)

En el sistema internacional (S.I.), la unidad de viscosidad dinámica es el Pascal. Segundo (Pas), en el Sistema de la unidad de viscosidad dinámica es el Poise (Po). Tales unidades fueron generalmente demasiado grandes para los aceites usados actualmente; por lo tanto, a menudo se usa el mili-pascal-segundo (mPas) y el centi-poise (cPo) que corresponden aproximadamente a la viscosidad del agua a 20°c.

En el C.G.S. En el sistema, la unidad de viscosidad cinemática son los Stokes (St) nuevamente, uno usa en la práctica los centistokes (sSt). Aún no se le ha dado nombre a la viscosidad cinemática en el sistema S.I. la tabla 1 resume los datos relativos a las unidades de viscosidad [4].

En otras palabras, la viscosidad del aceite generalmente se mide y define en dos formas, ya con base en su viscosidad dinámica (absoluta) o su viscosidad cinemática. La viscosidad absoluta del aceite, es la resistencia del flujo al esfuerzo cortante debido a la fricción interna y se mide con Unidades SI de Pa·s. En contraste, la viscosidad cinemática del aceite, es la resistencia del fluido al corte, debido a la gravedad y es medido con unidades SI de m2/s. La viscosidad cinemática del aceite se puede obtener dividiendo la viscosidad absoluta del aceite con su densidad correspondiente [12].

Viscosidad	Dimensión	C.G.S.	S.I.	Correspondencia
μ	ML ⁻¹ T ⁻¹	Poise (Po)	Pascal. Segundo (Pa.	1 cPo=
(Dinámica)		=g/cm.s	s)	1 mPas.s
			=Kg/m.s	
N	$L^{2} T^{-1}$	Stokes (St)	m ² /s	1 cSt=
(Cinemática)		=cm ² /s		$1 \text{ mm}^2/\text{s}$

Tabla 2. Unidades de la viscosidad [4].

2.2.2. Variación de la viscosidad por temperatura.

La viscosidad de los fluidos depende en gran medida de la temperatura [4,12,13], en general

disminuye con el aumento de la temperatura. A una temperatura de 20° C el agua tiene una variación de 2.5%, pero para aceites minerales puede llegar a tener una variación del 10 al 15%. La función que describe la viscosidad es decreciente a la temperatura (Fig.2).

Figura 2. Variación de la viscosidad con la temperatura para un aceite mineral parafínico (aceite ISO VG 32) [4].

2.2.3. Variación de la viscosidad por presión.

La mayoría de los aceites lubricantes tienen una viscosidad que aumenta con la presión. Este fenómeno tiene alta importancia práctica, ya que el lubricante puede ser sometido a presiones de hasta 10⁹ Pa en algunos mecanismos, lo que afecta a las propiedades de la película de lubricante [1,2,4,8,9,10,14].

En la Tabla 3 se puede observar cómo aumenta la viscosidad en un aceite parafínico por efecto de la presión.

Presión en	0.1	10	20	30	40	50	100
MPa							
Viscosidad	.05	.06	.075	.11	.15	.23	.70
en Pa.s.							

Tabla 3. Variación de la viscosidad por efecto de la presión en aceite de parafina [4].

Para los fluidos de baja viscosidad el aumento de la presión no afecta de manera significativa en su índice de viscosidad como se indica en la Tabla 4.

Tabla 4. Comparación de la viscosidad en (Pa. s) a 20°C [4].

Presión en MPa.	Aceite parafínico	Aceite nafténico	agua
0.1	0.052	0.055	0.00100
140	0.81	2.20	0.00111
280	8.7	91	0.00123

En 1902 Rychard Striebeck obtuvo una curva que proporciona la fricción versus espesor de película, donde pueden identificarse zonas específicas a un tipo de lubricación según el nivel de presión establecido en el contacto Fig. 3.

Grosor de la película de lubricante.

Figura 3. Curva de Striebeck's [4].

Para baja presión (o.1 a 50 Mpa), la zona 1 corresponde a la lubricación límite; la separación de la superficie está asegurada por moléculas de aceite adsorbidas. Este tipo de lubricación está relacionado con la fisicoquímica de superficies y lubricantes; para velocidades bajas y moderadas y para cargas relativamente bajas. En la zona 2, el efecto hidrodinámico descrito por la ecuación de Reynolds toma cierta importancia y tiende a separar las áreas que aún están en contacto sobre una parte de sus asperezas, este tipo de lubricación es la lubricación mixta. La zona 3 corresponde a la lubricación hidrodinámica y se describe mediante la ecuación de Reynolds. En esta región, una película completa separa la superficie y la fricción es proporcional a la velocidad si la viscosidad del lubricante es constante con la temperatura.

Para contactos muy cargados (hasta 2 Gpa.), la zona 1 corresponde a la lubricación bajo presión extrema; En este caso, las superficies están protegidas por películas producidas a través de

"Regresar a índice"

reacciones químicas debido a los aditivos de <Presión extrema> incluidos en el aceite y activados por las presiones y las temperaturas existentes en el contacto. La zona 2 corresponde a la lubricación mixta, y existe una transición entre la lubricación a presión extrema y la lubricación elastohidrodinámica la cual correspondiente a la zona 3.

2.3. Chumaceras hidrodinámicas.

Una chumacera hidrodinámica es un soporte cilíndrico, en el cual gira un eje separado únicamente por una película de aceite muy delgada, la cual tiene alta influencia sobre las características dinámicas de un sistema rotodinámico, su correcta modelación permite controlar y atenuar las amplitudes vibraciones, la cual es responsable de los desgastes prematuros, daños mecánicos severos y contaminación armónica a otros sistemas cercanos.

2.3.1. Importancia de la Modelación matemática en chumaceras hidrodinámicas.

Mediante modelos matemáticos se puede hacer la representación de un equipo rotodinámico. Tal representación está descrita por la ecuación de Reynolds, que sirve de base para el análisis hidrodinámico la cual permite determinar el campo de presión p (z, θ) dentro de una chumacera en función de su movimiento, de tal forma que al solucionar se puede predecir e interpretar de forma muy real el comportamiento de la misma.

2.3.2. Ecuación de Reynolds

Osborne Reynolds (1842-1912) estableció los fundamentos de la teoría moderna de la lubricación hidrodinámica, en un artículo publicado en 1886, para explicar los resultados experimentales de B. Tower. Su trabajo consiste en tres partes principales [1,4,10]:

Primera parte: O. Reynolds discute los resultados de B. Tower. Él muestra que cuando una película lubricante está separando completamente las superficies, la fricción no es proporcional a la velocidad, ya que el aumento de temperatura en la película conduce a una reducción en el valor de la viscosidad y, por lo tanto, de la fricción. Él sugiere que, en los experimentos realizados por B. Tower, los radios del eje y del rodamiento son diferentes y que el espesor mínimo de la película se ubica aguas abajo de la línea de carga. También señala que cuando la carga aumenta, la presión se vuelve negativa hacia el área de salida, lo que produce la ruptura de la película.

Segunda parte: O. Reynolds analiza películas simples entre placas paralelas, un control deslizante plano. Da una explicación física de la capacidad de carga debido a la conservación de la velocidad de flujo en la cuña de aceite. Finalmente, explica la necesidad de que la fuga se presente por la existencia de asperezas, las asperezas juegan un papel en la zona donde el espesor de la película es menor.

Tercera parte: O. Reynolds presenta los supuestos básicos de la lubricación hidrodinámica:

-El espesor de la película es pequeño en comparación con otras dimensiones.

-El flujo es laminar.

-El lubricante obedece la ley de newton, su viscosidad es constante y es incompresible.

-Las fuerzas de masa, así como las fuerzas de inercia se descuidan.

-La curvatura general de la película se descuida.

-El componente de velocidad del fluido en la dirección de la normal a la película, es pequeño en comparación con los otros componentes (v << u, w).

-Los gradientes de velocidad sobre el espesor de la película son preponderantes.

Por lo tanto, las ecuaciones de Navier-Stokes se reducen a:

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2}$$

$$\frac{\partial p}{\partial y} = 0$$

$$\frac{\partial p}{\partial z} = \mu \frac{\partial^2 w}{\partial y^2}$$
(2.5)

A través de la integración y suponiendo que no se produce un deslizamiento de fluido en las paredes, O. Reynolds obtiene el campo de velocidad en el fluido como:

$$u = \frac{1}{2\mu} \frac{\partial p}{\partial x} (y - h) y + U_0 \frac{h - y}{h} + U_1 \frac{y}{h}$$

$$w = \frac{1}{2\mu} \frac{\partial p}{\partial z} (y - h) y$$
(2.6)

Las velocidades se introducen en la ecuación de continuidad, que después se integran, generando la siguiente relación:

$$\frac{\partial}{\partial x}\left(h^{3}\frac{\partial p}{\partial x}\right) + \frac{\partial}{\partial z}\left(h^{3}\frac{\partial p}{\partial z}\right) = 6\mu\left[(U_{0} + U_{1})\frac{\partial h}{\partial x} + 2V1\right]$$
(2.7)

Esta ecuación se conoce desde entonces bajo el nombre de Ecuación de Reynolds y es la base de la lubricación hidrodinámica, la descripción completa se encuentra en las referencias [1-3,10]. Para facilitar la nomenclatura y la ubicación de centro del rotor se optó por la nomenclatura dada por la Fig. 4, es necesario pasar la Ec. (2.7), de coordenadas cartesianas a coordenadas cilíndricas.

Figura 4. Representación de la geometría de un soporte hidrodinámico [6].

A partir de [1-4,7,10], la ecuación de Reynolds para cargas dinámicas en una chumacera hidrodinámica de película fluida y en coordenadas cilíndricas, se escribe como:

$$\frac{\partial}{\partial \theta} \left(h^3 \frac{\partial p}{\partial \theta} \right) + R^2 \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \mu R^2 C_r \left[\varepsilon \cos \theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen \theta \right]$$
(2.8)

Ecuación general de Reynolds para una chumacera hidrodinámica.

Para la Ec. (2.8) sus condiciones de frontera vienen siendo dadas por:

$$0 \le z \le L, \ 0 \le \theta \le 2\pi, \ h(\theta) = C_r(1 + \varepsilon Cos\theta)$$
 (2.9)

$$p(-L/2)=0, \quad p(L/2)=0, \quad p(\theta+2\pi)=p(\theta)$$
 (2.10)

Donde:

p =Presión, Pa.

- θ =Coordenada circunferencial medida a partir de la línea de centros, rad.
- z =Coordenada axial a lo largo de la chumacera, rad.

 φ =Ángulo de attitud (o de equilibrio) a partir de la línea de fuerza, rad.

 C_r = Claro radial, m.

e =Excentricidad dimensional, m.

- ε =Excentricidad de radios adimensional, $\varepsilon = e/C_r$.
- R =Radio de la chumacera, m.
- μ =Viscosidad dinámica, Pa*s.
- ^h =Espesor de la película del fluido en forma adimensional, $h = H / C_r$.
- ω =velocidad angular promedio del muñón ($\omega = \omega_1 + \omega_2$), rad/s.
- $\dot{\varphi} \equiv d\varphi/dt$.
- $\dot{\varepsilon} = d\varepsilon/dt$.

La ecuación de Reynolds es una ecuación diferencial parcial elíptica de segundo orden, por lo que su solución con condiciones de contorno realistas, no se ha podido expresar analíticamente y no ha tenido solución hasta la fecha. Por lo que se han empleado enfoques o alternativas exitosas [2]:

- 1) Simplificación de la ecuación de Reynolds para casos particulares de interés práctico:
- A) chumaceras hidrodinámicas cortas.
- B) chumaceras hidrodinámicas largas.

2) Reformulación de la ecuación de Reynolds en forma de diferencias finitas o de elementos finitos, para soluciones numéricas en computadoras digitales.

Para el caso de estudio presente, se analiza la solución de la ecuación de Reynolds en chumaceras cortas. Por lo tanto, se dará una breve clasificación de chumaceras hidrodinámicas haciendo énfasis en las chumaceras cortas y como poder determinar si una chumacera puede ser considerada corta Conforme a [1]:

2.3.3 clasificación de chumaceras hidrodinámicas por longitud.

Una chumacera hidrodinámica se puede clasificar conforme a la relación que existe entre su longitud axial (L) y su diámetro (D). Esta relación L/D es necesaria para considerar si una chumacera es corta, intermedia o larga.

Figura 5. Vista simplificada de una chumacera, con los valores L, D, parar su clasificación y análisis de comportamiento dinámico de un sistema rotodinámico [1].

2.5.3.1. Chumaceras Cortas.

Una chumacera será corta si la longitud L es muy pequeña en comparación con su diámetro D, o sea que se debe cumplir que: $L \ll D$, en términos numéricos se considera corta si: $L/D \le 1/4$. Con forme a los estudios realizados por [1,2], compara tres criterios para determinar si una chumacera puede ser considerada corta conforme a tres casos de precisión: Primer caso (notado como 100%) el error es simplemente menor que el término considerado. En el segundo caso el error es menor del 10 % y el tercer caso es menor del 1% del término retenido.

Las aproximaciones lineales de los tres criterios en función de la excentricidad adimensional (ε) son las siguientes [1]:

Primer criterio (comparación puntual).

$$\left(\frac{L}{D}\right)_{100\%} < 1.2068 - 1.2049\varepsilon,$$

$$\left(\frac{L}{D}\right)_{10\%} < 0.3812 - 0.3804\varepsilon,$$

$$\left(\frac{L}{D}\right)_{1\%} < 0.1206 - 0.1205\varepsilon,$$

$$(2.11)$$

Segundo criterio (comparación de las integrales de los módulos).

$$\left(\frac{L}{D}\right)_{100\%} < 1.3543 - 0.7309\varepsilon,$$

$$\left(\frac{L}{D}\right)_{10\%} < 0.4281 - 0.2311\varepsilon,$$

$$\left(\frac{L}{D}\right)_{1\%} < 0.1352 - 0.0729\varepsilon,$$

$$(2.12)$$

Tercer criterio (comparación de los cuadrados de los módulos).

$$\left(\frac{L}{D}\right)_{100\%} < 1.756 - 1.0434\varepsilon,$$

$$\left(\frac{L}{D}\right)_{10\%} < 0.980 - 0.5755\varepsilon,$$

$$\left(\frac{L}{D}\right)_{1\%} < 0.5514 - 0.3239\varepsilon,$$

$$(2.13)$$

Estos tres criterios fueron comprados por [1] con soluciones numéricas tomadas de la tabla 8.6 del libro de Khonsari-Booser, los cuales presentan un error aproximado del 10% tabla 5.

	Е	$S_{{\it K}honsari}$	$S_{\scriptscriptstyle Calculado}$	Error
$\frac{1}{8}$	0.90	0.2353	0.2121	9.86 %
$\frac{1}{6}$	0.80	0.5427	0.4998	8.0 %
$\frac{1}{4}$	0.65	0.8090	0.7403	8.5 %
$\frac{1}{3}$	0.55	0.8228	0.7400	10 %
$\frac{1}{2}$	0.25	1.5514	1.3979	9.9 %

Tabla 5. Valores numéricos de números de Sommerfeld (Khonsari-Booser) vs. número de Sommerfeld, para la aproximación de la chumacera corta y su correspondiente error [1].

Llegando a la conclusión: que la aproximación encontrada en el segundo criterio es la que mejor se adapta a las soluciones numéricas, siendo el más adecuando, figura 6.

Figura 6. Comparación de las aproximaciones lineales cuando el error es menor que el 10% VS soluciones numéricas (puntos discretos) [1].

En la figura 6 aparecen los datos numéricos de la tabla 4 (mediante puntos discretos), comparados con los tres criterios expresados por [1], cuando el error es menor al 10%. Las ventajas de usar chumaceras cortas son:

- Presenta mejor transferencia de calor, debido a una circulación más rápida del lubricante a través del claro de la chumacera. La velocidad de flujo aumenta el enfriamiento debido a que el lubricante que es calentado por el esfuerzo cortante viscoso se reemplaza continuamente.
- Es menos sensible a la desalineación.
- Las partículas generadas por el desgaste abrasivo y el polvo se llevan al exterior a través del aceite con más facilidad, por lo que el desgaste se reduce.
- Requieren de menos espacio y dan como resultado, diseños más compactos.

5.5.3.2. Modelo matemático de una chumacera corta.

Debido a que el gradiente de presión alrededor de la chumacera corta es pequeño cuando se compara con los gradientes de presión en la dirección axial, se puede despreciar el primer término del lado izquierdo, así se obtendrá el modelo de la chumacera corta el cual es el modelo de esta tesis:

$$\frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \mu C_r \left[\varepsilon \cos \theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) \operatorname{Sen} \theta \right]$$
(2.14)

Ecuación de Reynolds para una chumacera corta en estado dinámico.

"Regresar a índice"

Resolviendo con respecto a z se obtiene el campo de presión para la chumacera corta en estado dinámico [4]:

$$p = \frac{6\mu C_r}{h^3} \left[\varepsilon Cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen\theta \right] \times [z^2 + 2c_1 z + c_2]$$
(2.15)

A partir de las condiciones de frontera (2.9) y (2.10) se evalúan las constantes en el campo de presión: $c_1 = 0$ $c_2 = -L^2/4$, sustituyendo en la Ec. (2.14) dando como resultado el campo de presión para una chumacera corta en estado dinámico:

$$p = \frac{6\mu C_r}{h^3} \left[\varepsilon Cos\theta + \varepsilon (\phi - \omega) Sen\theta \right] \times \left[z^2 - \frac{L^2}{4} \right]$$
(2.16)

Campo de presión para una chumacera corta en estado dinámico.

El lado derecho de (2.16) incluye incógnitas $\dot{\varepsilon}$ y $\dot{\phi}$. Estas dos incógnitas pueden determinarse integrando la trayectoria del centro del eje. La cual sirve para poder determinar las posiciones de equilibrio para la carga aplicada -*F*.

La fuerza de reacción del fluido que equilibra la carga aplicada está dada por: $F=pRd\Theta dz$. Es conveniente determinar los componentes de fuerza, en dirección tangencial F_{ε} y perpendicular F_{φ} a la línea de centros [5,6]. Estas dos componentes de fuerza pueden ser evaluados como:

$$F_{\varepsilon} = F \cos \varphi = -\int_{-L/2}^{L/2} \int_{\theta_1}^{\theta_2} pR \cos \theta d\theta dz$$
(2.17)

$$F_{\varphi} = Fsen\varphi = \int_{-L/2}^{L/2} \int_{\theta_1}^{\theta_2} pRsen\theta d\theta dz$$
(2.18)

2.5.3.3. Modelo matemático de una Chumacera larga.

Para que una chumacera pueda ser considerado como larga, si la longitud axial L es muy grande en comparación con su diámetro D, o sea que $L \gg D$, en términos numéricos se considera larga si: $L/D \ge 2$ [1,10] esta relación puede variar según el autor [2,4].

En la chumacera larga se asume que el gradiente de presión en la dirección axial de la chumacera es pequeño y se puede despreciar cuando se compara con los gradientes de presión alrededor de la chumacera, lo anterior es porque la distribución de presión no depende de los valores en la frontera. Recordando la Ecuación de Reynolds Ec. (2.8) y despreciando el segundo término del lado izquierdo se tendrá el modelo de una chumacera larga:

$$\frac{\partial}{\partial \theta} \left(h^3 \frac{\partial p}{\partial \theta} \right) = 12 \mu R^2 C_r \left[\varepsilon \cos \theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen \theta \right]$$
(2.19)

Ecuación de Reynolds para una chumacera larga en estado dinámico.

La solución de (2.19) es mucho más complicada que la que aparece en una chumacera corta (14), pues las integrales que aparecen son de difícil solución; sin embargo, en 1904 Arnold Sommerfeld venció estas dificultades introduciendo su sustitución universal, la cual permite determinar el campo de presión en la película de lubricante [1,4,10].

2.5.4. Clasificación de chumaceras hidrodinámicas por configuración geométrica.

Estas configuraciones geométricas determinar el comportamiento dinámico de la chumacera hidrodinámica, A excepción del rodamiento circular, todos los demás son rodamientos industriales: Rodamiento con tres lóbulos axiales es un rodamiento circular donde las ranuras aseguran el enfriamiento del aceite. Rodamiento elíptico se usa con mucha frecuencia, ya que es un rodamiento no circular más fácil de fabricar. También se utiliza el rodamiento con tres lóbulos precargados, a pesar de las dificultades de fabricación. El << desplazamiento >> teniendo con tres lóbulos desplazados, representa una mejora sobre el anterior; Los centros del lóbulo se han desplazado para aumentar la amplitud de la zona de película convergente. Rodamiento con recesos (rodamiento escalonado cubierto) tiene una concepción original: cada lóbulo consiste en una parte circular y un rebajo espiral para producir una película convergente.

A continuación, se presentará una clasificación de las geometrías más comunes en chumaceras hidrodinámicas, Tabla 6:

Tabla 6. Clasificación de chumaceras hidrodinámicas conforme su configuración geométrica [4, 20].

Configuración	Tipo de	Configuración	Tipo de	Configuración	Tipo	de
geométrica.	rodamiento.	geométrica.	rodamiento.	geométrica.	rodamiento.	

"Regresar a índice"

La chumacera que se analizará en este trabajo será de configuración geométrica circular, de longitud tipo corta.

Capítulo 3. Método de movilidad.

Entre los diferentes enfoques existentes, el método de movilidad desarrollado por Bróker [3], parece estar bien adaptado para analizar el comportamiento de soportes hidrodinámicos de rotores que son sometidos a cargas dinámicas, permitiendo una solución rápida y precisa [5-7]. Bróker [3] introdujo el concepto de movilidad para analizar este tipo de problemas relacionados con el rotor. Este método gráfico es útil para predecir la marcha de la órbita del centro del eje con respecto al tiempo a partir de una relación de excentricidad inicial en los mapas de movilidad.

Este nuevo enfoque es computacionalmente eficiente porque las ecuaciones de movimiento de rodamiento del rotor están escritas en forma explícita, evitando la necesidad de perder tiempo involucrado en la solución convencional de la ecuación de Reynolds [5-7].

La técnica de movilidad permite realizar algunas sustituciones en la ecuación de Reynolds, con el propósito de poder simplificar las variaciones temporales de la excentricidad y del ángulo de equilibrio, para lo anterior se generan dos vectores llamados vectores de movilidad que serán de gran importancia en la solución del modelo, a continuación, se realiza una breve descripción de tales vectores de movilidad representados en la Fig. 7.

Figura 7. Representación del vector de movilidad y sus componentes [6].

Para simplificar la solución de la ecuación de Reynolds, Booker propuso [3] expresar la relación de excentricidad de radios $\dot{\varepsilon}$ y el ángulo equilibrio $\dot{\phi}$ en función de M_{ε} y M_{φ} :

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu L D} M_{\varepsilon}$$
(3.1)

<u>"Regresar a índice"</u> 35

$$\phi = \frac{F(\frac{c}{R})^2}{\mu L D\varepsilon} M_{\varphi} + \overline{\omega}$$
(3.2)

$$\overline{\omega} = \frac{\omega}{2}$$
, $\omega = \omega_1 + \omega_2$ (3.3)

Estas dos funciones M_{ε} y M_{φ} son componentes del vector de movilidad \overline{M} , su módulo M está orientado con respecto a la dirección del movimiento por el ángulo β , siendo:

$$M_{\varepsilon} = -\vec{M}\cos\beta, \quad M_{\varphi} = -\vec{M}sen\beta \tag{3.4}$$

Sustituyendo (3.4) en (3.1) y (3.2) y posteriormente en el campo de presión de una chumacera corta (2.16), se obtiene el campo de presión en términos del vector de movilidad:

$$p = \frac{6\mu C_r}{h^3} \left[\frac{F(c/R)^2}{\mu LD} M_{\varepsilon} Cos\theta + \varepsilon \left(\frac{F(c/R)^2}{\mu LD\varepsilon} M_{\varphi} \right) Sen\theta \right] \times \left[z^2 - \frac{L^2}{4} \right]$$
(3.5)

Sustituyendo (3.5) en (2.17) y (2.18) se obtiene, [7]:

$$F_{\varepsilon} = F \cos\varphi = -\int_{-L/2}^{L/2} \int_{\theta_1}^{\theta_2} p(\theta, z) R \cos\theta d\theta dz$$

$$= \int_{\theta_1}^{\theta_2} \frac{\mu L^3 R}{c^2} \left[\frac{F(c/R)^2}{\mu LD} M_{\varepsilon} \cos\theta + \varepsilon \left(\frac{F(c/R)^2}{\mu LD \varepsilon} M_{\varphi} \right) Sen\theta \right] \times \frac{\cos\theta}{(1 + \varepsilon \cos\theta)^3} d\theta$$

(3.6)

$$F_{\varphi} = Fsen\varphi = \int_{-L/2}^{L/2} \int_{\theta_{1}}^{\theta_{2}} p(\theta, z) Rsen\theta d\theta dz$$
$$= \int_{\theta_{1}}^{\theta_{2}} \frac{\mu L^{3} R}{c^{2}} \left[\frac{F(c/R)^{2}}{\mu LD} M_{\varepsilon} Cos\theta + \varepsilon \left(\frac{F(c/R)^{2}}{\mu LD\varepsilon} M_{\varphi} \right) Sen\theta \right] \times \frac{sen\theta}{\left(1 + \varepsilon \cos\theta\right)^{3}} d\theta$$
(3.7)

Resolviendo Ec. (3.6) y (3.6) simultáneamente para obtener, [3]:

$$M_{\varepsilon} = \frac{(I_3^{20}\cos\varphi + I_3^{11}sen\varphi)}{2\left(\frac{L}{D}\right)^2 \left(I_3^{20}I_3^{02} - I_3^{11}I_3^{11}\right)}$$
(3.8)

$$M_{\varphi} = \frac{(I_3^{02} \cos\varphi + I_3^{11} sen\varphi)}{2\left(\frac{L}{D}\right)^2 \left(I_3^{20} I_3^{02} - I_3^{11} I_3^{11}\right)}$$
(3.9)

Siendo:

$$I_n^{lm} = \int_{\theta} \frac{sen^l \theta \cos^m \theta}{\left(1 + \varepsilon \cos\theta\right)^n} d\theta$$
(3.10)

Solución analítica de Ec. (3.10) conforme a [4]:

Para *l*=1, *m*=1, *n*=3:

$$I_{3}^{11} = \int_{\theta} \frac{sen\theta\cos\theta}{\left(1 + \varepsilon\cos\theta\right)^{3}} d\theta = \frac{-2\varepsilon\cos^{3}\theta}{\left(1 + \varepsilon^{2}\cos^{2}\theta\right)^{2}}$$
(3.11)

$$I_{3}^{02} = \int_{\theta} \frac{\cos^{2} \theta}{(1 + \varepsilon \cos \theta)^{3}} d\theta$$
$$= \frac{1}{(1 - \varepsilon^{2})^{2}} \times \left[\frac{\varepsilon sen \theta [3 + \cos^{2} \theta (2 - 5\varepsilon^{2})]}{(1 - \varepsilon^{2} \cos^{2} \theta)^{2}} \right] + \frac{2\varepsilon^{2} - 1}{\sqrt{1 - \varepsilon^{2}}} Arctg \left(\frac{-\sqrt{1 - \varepsilon^{2}}}{\varepsilon sen \theta} \right)$$
(3.12)

Para l=2, m=0, n=3.:

$$I_{3}^{20} = \int_{\theta} \frac{sen^{2}\theta}{\left(1 + \varepsilon \cos\theta\right)^{3}} d\theta$$
$$= \frac{\varepsilon sen\theta}{1 - \varepsilon^{2}} \times \left[\frac{1 + \cos^{2}\theta(\varepsilon^{2} - 2)}{\left(1 - \varepsilon^{2}\cos^{2}\theta\right)^{2}}\right] + \frac{1}{\left(1 - \varepsilon^{2}\right)\sqrt{1 - \varepsilon^{2}}} \operatorname{Arctg}\left(\frac{-\sqrt{1 - \varepsilon^{2}}}{\varepsilon sen\theta}\right)$$
(3.13)

Por lo tanto, las Ec. (3.1) y (3.2) quedan de la siguiente manera:

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(\frac{\varepsilon sen\theta}{L-\varepsilon^2} \times \left[\frac{1+\cos^2\theta(\varepsilon^2-2)}{(1-\varepsilon^2\cos^2\theta)^2}\right] + \frac{1}{(1-\varepsilon^2)\sqrt{1-\varepsilon^2}} \operatorname{Arctg}\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen\theta}\right)\right] \cos \varphi + \frac{-2\varepsilon \cos^3\theta}{(1+\varepsilon^2\cos^2\theta)^2} \sin \varphi}{\left(1+\varepsilon^2\cos^2\theta)^2} \right] + \frac{1}{(1-\varepsilon^2)\sqrt{1-\varepsilon^2}} \operatorname{Arctg}\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen\theta}\right) \left(\frac{1}{(1-\varepsilon^2)^2} \times \left[\frac{\varepsilon sen\theta(3+\cos^2\theta(2-5\varepsilon^2))}{(1-\varepsilon^2\cos^2\theta)^2}\right] + \frac{2\varepsilon^2-1}{\sqrt{1-\varepsilon^2}} \operatorname{Arctg}\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen\theta}\right)\right) - \left(\frac{-2\varepsilon \cos^3\theta}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1}{(1-\varepsilon^2)^2} \times \left[\frac{\varepsilon sen\theta(3+\cos^2\theta(2-5\varepsilon^2))}{(1-\varepsilon^2\cos^2\theta)^2}\right] + \frac{2\varepsilon^2-1}{\sqrt{1-\varepsilon^2}} \operatorname{Arctg}\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen\theta}\right)\right) - \left(\frac{-2\varepsilon \cos^3\theta}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) + \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) + \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) \left(\frac{1-\varepsilon^2}{(1+\varepsilon^2\cos^2\theta)^2}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+\varepsilon^2}{\varepsilon sen\theta}\right) = \frac{1}{\varepsilon^2} \left(\frac{1+$$

(3.14)

<u>"Regresar a índice"</u> 37

$$\varphi = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(\frac{1}{(1-\varepsilon^2)^2} \times \left[\frac{\varepsilon sen \theta \left[3 + \cos^2 \theta \left(2 - 5\varepsilon^2\right)\right]}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{2\varepsilon^2 - 1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \cos \varphi + \frac{-2\varepsilon \cos^3 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \sin \varphi}{\left(1+\varepsilon^2 \cos^2 \theta\right)^2} \right] + \frac{1}{(1-\varepsilon^2)\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \left(\frac{1}{(1-\varepsilon^2)^2} \times \left[\frac{sen \theta \left[3 + \cos^2 \theta \left(2 - 5\varepsilon^2\right)\right]}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{2\varepsilon^2 - 1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \right) - \left(\frac{-2\varepsilon \cos^3 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{sen \theta \left[3 + \cos^2 \theta \left(2 - 5\varepsilon^2\right)\right]}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{2\varepsilon^2 - 1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \right) - \left(\frac{-2\varepsilon \cos^3 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{sen \theta \left[3 + \cos^2 \theta \left(2 - 5\varepsilon^2\right)\right]}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{2\varepsilon^2 - 1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \right) - \left(\frac{2\varepsilon \cos^3 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{1+\varepsilon^2 \cos^2 \theta}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \right) - \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{1+\varepsilon^2 \cos^2 \theta}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{-\sqrt{1-\varepsilon^2}}{\varepsilon sen \theta}\right) \right) - \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{1+\varepsilon^2 \cos^2 \theta}{(1-\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \right) - \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) \left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2} \times \left[\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right] + \frac{1}{\sqrt{1-\varepsilon^2}} Arctg\left(\frac{1-\varepsilon^2 \cos^2 \theta}{(1+\varepsilon^2 \cos^2 \theta)^2}\right) + \frac{1}{\sqrt{1-\varepsilon^2}} Arctg\left($$

Debido a que la solución en forma analítica de (3.14) y (3.15) es compleja e implica una gran cantidad de manipulación matemática, se puede optar por la solución numérica de Booker que se muestra en [3,5,6,7]:

Para F>0:

$$M_{\varsigma} = \frac{(1-\varsigma)^{5/2}}{\pi \left(\frac{L}{D}\right)^{2}}, \qquad \qquad M_{K} = -\frac{4k(1-\varsigma)^{3/2}}{\pi^{2} \left(\frac{L}{D}\right)^{2}}$$
(3.16)

Para F<0:

$$M_{\varsigma} = \frac{(1+\varsigma)^{5/2}}{\pi \left(\frac{L}{D}\right)^{2}}, \qquad M_{K} = \frac{4k(1+\varsigma)^{3/2}}{\pi^{2} \left(\frac{L}{D}\right)^{2}}$$
(3.17)

Donde

 $\varsigma = \varepsilon \cos \varphi$ $k = \varepsilon \sin \varphi$

$$M_{\varepsilon} = M_{c} \cos\varphi + M_{K} sen\varphi, \qquad M_{\varphi} = -M_{\varsigma} sen\varphi + M_{k} \cos\varphi$$
(3.19)

Componentes del vector de Movilidad, Solución numérica de Booker.

Por lo tanto, las Ec. (3.1) y (3.2) quedan de la siguiente manera:

Para la aproximación numérica de Booker para cuando F>0

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi (1 - \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right]$$
(3.20)

<u>"Regresar a índice"</u> 38

$$\dot{\varphi} = \frac{F(\frac{c}{R})^2}{\mu LD\varepsilon} \left[-\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi (1 - \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} \sin\varphi \right] + \overline{\omega}$$
(3.21)

Ángulo equilibrio en función de las componentes del Vector de movilidad (Mε y Mφ) para una F>0

Para la aproximación numérica de Booker para cuando F<0

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi (1 + \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right]$$
(3.22)

Excentricidad de radios en función de las componentes del Vector de movilidad (M ε y M ϕ) para una F<0:

$$\phi = \frac{F(\frac{c}{R})^2}{\mu L D\varepsilon} \left[-\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi (1 + \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right] + \overline{\omega}$$
(3.23)

Ángulo equilibrio en función de las componentes del Vector de movilidad (M ε y M φ) para una F<0:

Notar que εy_{ϕ} están en función de εy_{ϕ} por lo que se pueden solucionar estas ecuaciones con las condiciones iniciales que se deseen.

Capítulo 4. Modelo de presurización para una chumacera presurizada.

Una forma de poder modificar las propiedades dinámicas de una chumacera hidrodinámica es por medio de cambios en la temperatura o cambio en la presión en el aceite, debido a que influyen altamente en la viscosidad del aceite, los cambios de la temperatura del aceite fuera de los límites de operación de la máquina son altamente dañinos por lo que la temperatura del aceite sebe ser controlada, en cambio, la presión puede ser manipulada de manera artificial e instantáneamente producir cambios.

Con una correcta presurización podemos modificar las propiedades dinámicas de la chumacera hidrodinámica (coeficientes de rigidez y amortiguamiento) causando efectos positivos, de esta manera la amplitud vibraciones puede ser atenuada y controlada [1,2,4,10]. En las chumaceras hidrodinámicas el lubricante generalmente se suministra a un rodamiento hidrodinámico a través de una ranura de entrada en una región donde se predicen bajas presiones en la película de lubricante, las presiones de suministro típicas (Ps) están en el orden de 20-80 psi [2].

Figura 8. Ubicación del punto de presurización en la chumacera, con ubicación axial (a) y angular (γ) arbitraria [1]. El modelo matemático que describe el campo de presión en una chumacera hidrodinámica presuriza en un puerto de inyección de lubricante con ubicación (a, γ), ver figura 8, fue dado por Ignacio Ramírez Vargas [1], el cual presenta un nuevo modelo de presurización en una puerta puntual usando la función generalizada Delta de Dirac, dando como resultado una función (Ec. 4.1) que simplifican los cálculos notablemente, tanto en el campo de presión, así como en los cálculos dinámicos y está dada forma adimensional por:

$$\frac{\partial}{\partial \theta} \left(h^{3}(\theta) \frac{\partial \overline{p}}{\partial \theta} \right) + \left(\frac{D}{L} \right)^{2} \frac{\partial}{\partial \overline{z}} \left(h^{3}(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right) = \overline{q}_{prr} \,\delta(\overline{z} - a) \delta\left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right]$$
(4.1)

Modelo del campo de presión en una chumacera hidrodinámica presurizada con puerto con ubicación en (a, γ). <u>"Regresar a índice"</u>

Siendo:

$$\overline{q}_{prt} = \frac{P_{fict}}{P_{dim}} , \qquad P_{fict} = \frac{\Delta F_{pres}}{DL} , \qquad p_{dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2$$
(4.2)

 \overline{q}_{prt} =Intensidad de presión adimensional.

 ΔF_{pres} =fuerza de presurización.

Donde
$$\Delta F_{pres}$$
 está dado por las condiciones $\Delta s \to 0$, entonces $\Delta p \to \infty$, por lo tanto:

 $\Delta F_{pres} = \Delta p \cdot \Delta s = q = \text{constante.}$

Para facilitar la nomenclatura y la ubicación de la puerta puntual (puerto de inyección), en la figura 9 aparecen el sistema de coordenadas XO_bY en el cual el punto O_b representa el centro de la chumacera. El punto O_j es el centro del muñón para el sistema móvil. El ángulo entre los sistemas de coordenadas es llamado ángulo de equilibrio φ (attitud), la posición angular del puerto de inyección está dada por el ángulo γ en el sistema fijo y por $\theta_{\gamma} = \pi - \varphi + \gamma$ en el sistema móvil.

Figura 9. Sistema de coordenadas y ubicación del punto de inyección en una chumacera.

Notar que la posición del rotor en estado estable está determinada por el Ángulo de equilibrio φ y la excentricidad ε . Al añadir el efecto de la presurización la posición del rotor en estado estable cambiará.

Para el caso de una chumacera corta con un puerto de presurización.

$$\frac{\partial}{\partial z} \left(h^3(\theta) \frac{\partial p}{\partial z} \right) = \left(\frac{L}{D} \right)^2 \overline{q}_{prt} \,\delta(z-a) \delta\left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right]$$
(4.3)

<u>"Regresar a índice"</u> 41 Siendo las condiciones de contorno:

$$-1 \le \overline{z} \le 1, \quad p(\overline{z} = \pm 1) = 0, \quad h = 1 + \varepsilon \cos\theta, \quad 0 \le \theta \le 2\pi, \qquad \hat{p}(\theta) = \hat{p}(\theta + 2\pi)$$
(4.4)

4.1. Modelo matemático para una chumacera corta con un anillo de presurización.

Un anillo de presurización es la fuente circular de inyección situada en cualquier valor de la coordenada axial adimensional, Fig. 10. Para el caso donde la presurización se realiza alrededor de un anillo en cualquier posición axial de la chumacera [1], [10].

Figura 10. Posición axial de alimentación de lubricante, notar que a una distancia "a" del centro de la chumacera se presenta la inyección, pero en forma circular (anillo presurizado), además no se especifica la posición circunferencial de presurización.

El modelo de presurización se puede obtener a partir de (4.3), puesto que únicamente se requiere la ubicación axial, no será necesario colocar los dos impulsos de Dirac, las condiciones de contorno son las mismas, por lo tanto, el modelo es:

$$\frac{\partial}{\partial \bar{z}} \left[h^3(\theta) \frac{\partial \bar{p}}{\partial \bar{z}} \right] = \left(\frac{L}{D} \right)^2 \bar{q}_{pn} \,\delta\left(\bar{z} - a \right) \tag{4.5}$$

El modelo (4.5) parece ser una buena aproximación para describir el campo de presión en chumaceras de gas donde se tienen un gran número de puertos.

4.2. Modelo Matemático para una chumacera corta con una línea de presurización.

Este caso corresponde a una línea de presurización en donde el flujo se ubica a lo largo de la chumacera, figura 11, para cualquier posición circunferencial " γ " [1], [10].

Figura 11. Ubicación de la línea de presurización en la chumacera. Se define el valor circunferencial (γ) para especificar la posición angular de la línea de inyección de lubricante [1].

La ecuación de Reynolds adimensional Para una chumacera corta con una línea de presurización es dada por [1]:

$$\frac{\partial}{\partial \overline{z}} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right] = \left(\frac{L}{D} \right)^2 \overline{q}_{prt} \, \delta \left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right] \tag{4.6}$$

Capítulo 5. Campos de presión en una chumacera.

El modelo matemático que describe el comportamiento de una chumacera es la ecuación de Reynolds, al darle solución se puede determinar los campos de presión tanto en estado transitorio como en estado estable en dirección axial y transversal, permitiendo determinar algunas características: las regiones en donde la película de lubricante puede romperse (cavitación), el lugar en donde la presión alcanza su valor máximo, las fuerzas en el fluido lubricante acompañadas de los efectos de rigidez y amortiguamiento (conocidos como coeficientes rotodinámicos). Por tanto, una vez conocido el campo, se puede caracterizar por completo a una chumacera hidrodinámica [1,2,4,10].

5.1. Obtención del campo de presión en una chumacera.

En esta sección se determinará el campo de presión en una chumacera corta tanto en estado transitorio y estable:

Ecuación general de Reynolds [1]:

$$\frac{\partial}{\partial \theta} \left(h^3 \frac{\partial p}{\partial \theta} \right) + R^2 \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \frac{\mu R^2}{C_r^2} \left[\varepsilon \cos \theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) \operatorname{Sen} \theta \right]$$
(5.1)

Ecuación general de Reynolds en estado dinámico.

Donde:

$$-\frac{L}{2} \le z \le \frac{L}{2}, \quad p\left(z = \pm \frac{L}{2}\right) = 0, \qquad o \le \theta \le 2\pi, \qquad h(\theta) = I + \varepsilon \cos\theta, \\ p(\theta + 2\pi) = p(\theta) \tag{5.2}$$

Para generalizar la ecuación de Reynolds se utilizará las siguientes sustituciones para adimensionar:

$$z = \frac{L}{2}\bar{z}, \qquad \bar{p} = \frac{p}{p_{\rm dim}}, \qquad p_{\rm dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \tag{5.3}$$

Sustituyendo:

$$\mu \frac{\omega}{2\pi} \left(\frac{R}{Cr}\right)^2 \left[\frac{\partial}{\partial \theta} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \theta}\right) + R^2 \cdot \frac{1}{\left(\frac{L}{2}\right)^2} \frac{\partial}{\partial \overline{z}} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}}\right)\right] = 12 \frac{\mu R^2}{C_r^2} \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2}\right) \operatorname{Sen}\theta\right]$$
(5.4)

Simplificando obtenemos la ecuación adimensional de Reynolds en estado dinámico:

$$\frac{\partial}{\partial\theta} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial\theta} \right] + \left(\frac{D}{L} \right)^2 \frac{\partial}{\partial \overline{z}} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right] = \frac{24\pi}{\omega} \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) \operatorname{Sen}\theta \right]$$
(5.5)

Ecuación general de Reynolds adimensional en estado dinámico.

Donde:

$$-1 \le \overline{z} \le 1, \quad p(\overline{z} = \pm 1) = 0, \qquad h(\theta) = 1 + \varepsilon \cos \theta, \qquad 0 \le \theta \le 2\pi$$
(5.6)

Para el caso del estado estable se tiene que: $\varepsilon = 0$, $\phi = 0$, por lo tanto la ecuación de Reynolds de Reynolds es estado estable se puede escribir de la siguiente manera:

$$\frac{\partial}{\partial \theta} \left(h^3 \frac{\partial p}{\partial \theta} \right) + R^2 \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = -\frac{6\mu R^2 \varepsilon \omega Sen\theta}{C_r^2}$$
(5.7)

Ecuación general de Reynolds en estado estable.

Donde:

$$-\frac{L}{2} \le z \le \frac{L}{2}, \quad p\left(z = \pm \frac{L}{2}\right) = 0, \qquad o \le \theta \le 2\pi, \qquad h(\theta) = 1 + \varepsilon \cos\theta, \qquad p(\theta + 2\pi) = p(\theta)$$
(5.8)

Recordar las siguientes sustituciones para adimensionar:

$$z = \frac{L}{2}\bar{z}, \qquad \bar{p} = \frac{p}{p_{\rm dim}}, \qquad p_{\rm dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \tag{5.9}$$

las ecuaciones de Reynolds (Ec. 5.7) en estado estable toma la siguiente forma:

$$\mu \frac{\omega}{2\pi} \left(\frac{R}{Cr}\right)^2 \left[\frac{\partial}{\partial \theta} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \theta}\right) + R^2 \cdot \frac{1}{\left(\frac{L}{2}\right)^2} \frac{\partial}{\partial \overline{z}} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}}\right)\right] = -\frac{6\mu R^2 \varepsilon \omega Sen\theta}{C_r^2}$$
(5.10)

Simplificando obtenemos la ecuación de Reynolds adimensional en estado estable:

$$\frac{\partial}{\partial \theta} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial \theta} \right] + \left(\frac{D}{L} \right)^2 \frac{\partial}{\partial \overline{z}} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right] = -12\pi \varepsilon Sen\theta$$
(5.11)

Ecuación general de Reynolds adimensional en estado dinámico

Donde:

<u>"Regresar a índice"</u> 45

$$-1 \le \overline{z} \le 1, \qquad p(\overline{z} = \pm 1) = 0, \qquad h(\theta) = 1 + \varepsilon \cos \theta, \qquad 0 \le \theta \le 2\pi$$
(5.12)

Notar que si en la ecuación adimensional de Reynolds en estado dinámico (Ec. 5.5) se aplican las condiciones de $\varepsilon = 0$, $\phi = 0$, se obtiene la Ecuación de Reynolds adimensional en estado estable (Ec. 5.11).

5.2. Campo de presión en una chumacera corta.

Para el caso de estudio presente, se analiza la solución de la ecuación de Reynolds para el caso de chumacera corta. La chumacera corta ha sido estudiada y analizada por Dubois y Ocvirk, quienes asumieron que el gradiente de presión alrededor de la chumacera corta es pequeño cuando se compara con los gradientes de presión en la dirección axial, se puede despreciar el primer término del lado izquierdo de la Ec. (5.1), así se obtendrá el modelo de la chumacera corta [1,2,4,7,10]:

$$R^{2} \frac{\partial}{\partial z} \left(h^{3} \frac{\partial p}{\partial z} \right) = 12 \frac{\mu R^{2}}{C_{r}^{2}} \left[\varepsilon \cos \theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen \theta \right]$$
(5.13)

Simplificando se obtiene la ecuación de Reynolds en estado dinámico para una chumacera corta:

$$\frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \frac{\mu}{C_r^2} \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) \operatorname{Sen} \theta \right]$$
(5.14)

Ecuación general de Reynolds para una chumacera corta en estado dinámico.

Donde:

$$-\frac{L}{2} \le z \le \frac{L}{2}, \qquad p\left(z = \pm \frac{L}{2}\right) = 0, \qquad o \le \theta \le 2\pi, \qquad h(\theta) = 1 + \varepsilon \cos\theta, \ p(\theta + 2\pi) = p(\theta)$$
(5.15)

Solución de Ec. (5.14):

Resolviendo con respecto a z se obtiene el campo de presión para la chumacera corta [4]:

$$p = \frac{6\mu C_r}{h^3} \left[\varepsilon Cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen\theta \right] \times [z^2 + 2c_1 z + c_2]$$
(5.16)

A partir de las condiciones de frontera (2.9) y (2.10) se evalúan las constantes en el campo de presión: $c_1 = 0$ $c_2 = -L^2/4$, sustituyendo en la Ec. (5.16):

$$p = \frac{6\mu C_r}{h^3} \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \omega \right) Sen\theta \right] \times \left[z^2 - \frac{L^2}{4} \right]$$
(5.17)

Campo de presión para una chumacera corta en estado dinámico.

Para adimensionar la ecuación de Reynolds en estado dinámico de una chumacera corta es necesario recordar las siguientes sustituciones:

$$z = \frac{L}{2}\bar{z}, \qquad \bar{p} = \frac{p}{p_{\rm dim}}, \qquad p_{\rm dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \tag{5.18}$$

Sustituyendo en Ec. 5.1:

$$\mu \frac{\omega}{2\pi} \left(\frac{R}{Cr}\right)^2 \left[R^2 \cdot \frac{1}{\left(\frac{L}{2}\right)^2} \frac{\partial}{\partial \overline{z}} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right) \right] = 12 \frac{\mu R^2}{C_r^2} \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) \operatorname{Sen}\theta \right]$$
(5.19)

Simplificando:

$$\frac{\partial}{\partial \overline{z}} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right) = \left(\frac{L}{D} \right)^2 \frac{24\pi}{\omega} \left[\dot{\varepsilon} \cos\theta + \varepsilon \left(\dot{\varphi} - \frac{\omega}{2} \right) \operatorname{Sen} \theta \right]$$
(5.20)

Ecuación general de Reynolds adimensional para una chumacera corta en estado dinámico.

Donde:

$$-1 \le \overline{z} \le 1, \qquad p(\overline{z} = \pm 1) = 0, \qquad h(\theta) = 1 + \varepsilon \cos \theta, \qquad 0 \le \theta \le 2\pi$$
(5.21)

Recordar que el gradiente de presión alrededor de la chumacera corta es pequeño cuando se compara con los gradientes de presión en la dirección axial, por lo que se puede despreciar el primer término del lado izquierdo notar que al aplicar esta condición en la Ec. 5.5 se obtiene la ecuación 5.20.

Recordar que en estado estable se tiene que: $\dot{\varepsilon} = 0$, $\dot{\phi} = 0$, aplicando estas condiciones en la Ec. 5.1 da como resultado la ecuación de Reynolds en estado estable para una chumacera corta se puede escribir de la siguiente manera:

$$R^{2} \frac{\partial}{\partial z} \left(h^{3} \frac{\partial p}{\partial z} \right) = 12 \frac{\mu R^{2}}{C_{r}^{2}} \left[\varepsilon \left(-\frac{\omega}{2} \right) Sen \theta \right]$$
(5.22)

Simplificando:

$$\frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = -\frac{6\mu\varepsilon\omega}{C_r^2} Sen\theta$$
(5.23)

Ecuación general de Reynolds para una chumacera corta en estado estable.

Donde:

$$-\frac{L}{2} \le z \le \frac{L}{2}, \qquad p\left(z = \pm \frac{L}{2}\right) = 0, \quad 0 \le \theta \le 2\pi, \qquad h(\theta) = I + \varepsilon \cos\theta, \quad p(\theta + 2\pi) = p(\theta)$$
(5.24)

Para adimensionar la ecuación de Reynolds en estado estable de una chumacera corta es necesario aplicar las siguientes sustituciones:

$$z = \frac{L}{2}\bar{z}, \qquad \bar{p} = \frac{p}{p_{\rm dim}}, \qquad p_{\rm dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \tag{5.25}$$

Sustituyendo en Ec. 5.23:

$$\mu \frac{\omega}{2\pi} \left(\frac{R}{Cr}\right)^2 \left[R^2 \cdot \frac{1}{\left(\frac{L}{2}\right)^2} \frac{\partial}{\partial \overline{z}} \left(h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right) \right] = 12 \frac{\mu R^2}{C_r^2} \left[\varepsilon \left(-\frac{\omega}{2} \right) Sen\theta \right]$$
(5.26)

Simplificando:

$$\frac{\partial}{\partial \overline{z}} \left[h^3(\theta) \frac{\partial \overline{p}}{\partial \overline{z}} \right] = -12\pi\varepsilon \left(\frac{L}{D} \right)^2 Sen\theta$$
(5.27)

Ecuación general de Reynolds adimensional para una chumacera corta en estado estable.

Donde:

$$-1 \le \overline{z} \le 1, \qquad p(\overline{z} = \pm 1) = 0, \qquad h(\theta) = 1 + \varepsilon \cos \theta, \qquad 0 \le \theta \le 2\pi$$
(5.28)

Resolviendo (5.27) se obtiene el campo de presión en una chumacera corta no presurizada, esta solución tiene el nombre de:

$$\overline{p}_{Ocv} = -6\pi \left(\frac{L}{D}\right)^2 \frac{\varepsilon_{Ocv} Sen\theta}{\left(1 + \varepsilon_{Ocv} Cos\theta\right)^3} \left(\overline{z}^2 - 1\right)$$
(5.29)

Campo de presión adimensional de una chumacera corta en estado estable (solución de Ocvirk).

El subíndice Ocv de la presión y la excentricidad, indica que es resultado de la solución de Ocvirk.

5.3. Solución del campo presurizado.

La solución del modelo de presurización puntual presentado en [1], es diferente al caso clásico pues contiene funciones de Dirac; las cuales tienen que ser tratadas de manera diferente (recordar que no son realmente funciones) usando propiedades de la teoría de distribuciones, la solución fue dada por R.V. Ignacio [1]:

El modelo para el caso de puerto puntual de inyección está dado por:

$$\frac{\partial}{\partial \overline{z}} \left(h^3 \frac{\partial \overline{p}}{\partial \overline{z}} \right) = \left(\frac{L}{D} \right)^2 \overline{q}_{prt} \, \delta \, (\overline{z} - a) \delta \left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right]$$
(5.30)

Modelo de presurización para un puerto puntual de inyección para una chumacera corta

Donde:

$$-1 < \overline{z} < 1, \qquad 0 \le \theta \le 2\pi, \qquad \overline{p}(\overline{z} = \pm 1) = 0, \quad \overline{p}(\theta + 2\pi) = \overline{p}(\theta)$$
(5.31)

La solución de (5.30) se puede obtener con ayuda de algunas propiedades de la función de Dirac (ver [1]). De la teoría de funciones especiales se sabe que:

$$\frac{d^2}{d\overline{z}^2} \left(-\frac{1}{2} |\overline{z} - a| \right) = \delta(\overline{z} - a)$$
(5.32)

Separando variables, usando (5.15) e integrando se obtiene:

$$\overline{p}_{pres}(\overline{z},\theta) = \left(\frac{L}{D}\right)^2 \overline{q}_{prt} \frac{\delta\left[\theta - \left(\pi + \gamma - \varphi_{pres}\right)\right]}{h^3} \left(-\frac{1}{2}|\overline{z} - a| + c_1 \overline{z} + c_2\right)$$
(5.33)

Entonces, sustituyendo las condiciones de frontera (5.31) en (5.33) se tiene:

$$0 = -\frac{1}{2}|1-a|+c_1+c_2$$
 (A) Notar que $-1 \le a \le 1$
$$0 = -\frac{1}{2}|-1-a|-c_1+c_2$$
 (B) Sumando (A)+(B)
$$0 = -\frac{1}{2}(1-a) - \frac{1}{2}(1-a) + 2c_2$$

Simplificando:

 $0 = -1 + 2c_2$ $\boxed{c_2 = \frac{1}{2}}$ de (A): $\frac{1}{2}(1-a) - \frac{1}{2} = c_1$ $\boxed{c_1 = -\frac{1}{2}a}$

Sustituyendo los valores de las constantes c_1 y c_2 en (5.33) se obtiene el campo de presión resultante para una posición arbitraria de inyección (*a*, γ):

$$\overline{p}_{pres}(\overline{z},\theta) = \left(\frac{L}{D}\right)^2 \overline{q}_{pr} \frac{\delta\left[\theta - \left(\pi + \gamma - \varphi_{pres}\right)\right]}{2\left(1 + \varepsilon \cos\theta\right)^3} \left(1 - a \,\overline{z} - |\overline{z} - a|\right)$$
(5.34)

Modelo del Campo de presión para un puerto puntual de inyección para una chumacera corta.

Por lo tanto, el campo de presión resultante será dado por la suma del campo clásico no presurizado y el campo presurizado.

$$\overline{p}_{Ocv} + \overline{p}_{pres}(\overline{z},\theta) = -6\pi \left(\frac{L}{D}\right)^2 \frac{\varepsilon_{Ocv} Sen\theta}{\left(1 + \varepsilon_{Ocv} Cos\theta\right)^3} (\overline{z}^2 - 1) + \left(\frac{L}{D}\right)^2 \overline{q}_{pri} \frac{\delta \left[\theta - \left(\pi + \beta - \varphi_{pres}\right)\right]}{2\left(1 + \varepsilon Cos\theta\right)^3} (1 - a \,\overline{z} - |\overline{z} - a|)$$
(5.35)

Modelo del campo de presión total por efecto de presurización en un punto de una chumacera corta ($P_{Ocv} + P_{Pres}$).

La solución (5.35) está definida en términos de la función Delta de Dirac, por lo que no es posible graficar el campo de presión, sin embargo, si se usa una aproximación adecuada se puede encontrar un campo. La ecuación (5.36) muestra una posible aproximación de la Delta de Dirac para el campo de (5.34):

$$\delta \left[\theta - \left(\pi + \beta - \varphi_{pres} \right) \right] = \frac{\overline{n}}{\sqrt{\pi}} e^{-\overline{n}^2 \left[\theta - \left(\pi + \beta - \varphi_{pres} \right) \right]^2}$$
(5.36)

Con la aproximación (5.19) de la función Delta de Dirac es posible graficar el campo de presión resultante en cualquier posición arbitraria de inyección.

Capítulo 6. Fuerzas en la película de aceite.

Las fuerzas que actúan por la película de aceite están determinadas por el campo de presión, esto nos permitirá determinar los principales parámetros de la chumacera, para lo cual se necesita determinar la posición de equilibrio: A partir de una sumatoria de fuerzas en estado estable, las cuales se pueden encontrar conociendo el campo de presión en el lubricante, debido a las fuerzas en a la película de aceite y al peso del sistema. De esta forma es posible predecir la ubicación exacta del muñón bajo determinadas condiciones de operación [1-4,10].

Para el cálculo de la capacidad de carga de la película de lubricante es conveniente asignar dos componentes (r, t):

Siendo (*r*) La carga radial que es la fuerza que actúa a lo largo de la línea de centros.

Siendo (*t*) la carga transversal que es la fuerza perpendicular a la línea de centros.

Figura 12. Representación del eje de coordenadas para la suma de fuerzas en la posición de equilibrio del eje de una chumacera Hidrodinámica.

Como indica la figura 12, la línea de centros generalmente no se alinea con la carga aplicada W. Para que se presente el equilibrio estático es necesario que la suma de fuerzas que actúan sobre el rotor sea cero, por lo tanto [1,2]:

$$\vec{W} + \vec{F} = 0 \tag{6.1}$$

(peso o fuerza del sistema) +(fuerza de la película de aceite) =0,

En forma de sus componentes radial y transversal:

$$WCos\varphi - F_R = 0$$

-WSen\varphi + F_T = 0 (6.2)

Teniendo en cuanta lo anterior es posible obtener el ángulo de equilibrio ϕ a partir de las dos componentes de carga F_R y F_T :

$$\left|W\right| = \left|F\right| = \sqrt{\left(F_T\right)^2 + \left(F_R\right)^2}, \qquad Tan\varphi = \left|\frac{F_T}{F_R}\right|$$
(6.3)

La posición de equilibrio estático del rotor, bajo una carga unidireccional (como el peso del rotor), se puede calcular estableciendo componentes de la carga sumada es iguales a las integrales de la presión de la película de fluido sobre la superficie del rotor [1], [2], [19].

Por lo tanto, las fuerzas en las direcciones radial y transversal están dadas en forma cartesiana por:

$$|F_{R}| = |F| \cos\varphi = \int_{-\frac{L}{2}}^{\frac{L}{2}} \int_{0}^{R\theta} p \cos\theta dx dz$$
(6.4)

$$\left|F_{T}\right| = \left|F\right|Sen\varphi = \int_{-\frac{L}{2}}^{\frac{L}{2}R\theta} \int_{0}^{R\theta} p\,Sen\theta\,dxdz \tag{6.5}$$

Notar que las fuerzas tangenciales y radiales están en coordenadas cartesianas por lo que por comodidad se pasaran a coordenadas cilíndricas.

Donde:

$$x = R\theta; \qquad dx = Rd\theta; \tag{6.6}$$

Sustituyendo:

$$|F_{R}| = |F| \cos\varphi = \int_{-L/2}^{L/2} \int_{\theta_{1}}^{\theta_{2}} p(\theta, z) R \cos\theta d\theta dz$$
(6.7)

$$|F_{T}| = |F|Sen\varphi = \int_{-L/2}^{L/2} \int_{\theta_{1}}^{\theta_{2}} p(\theta, z)R\cos\theta d\theta dz$$
(6.8)

Para adimensionar es necesario realizar las siguientes sustituciones:

$$z = \frac{L}{2}\bar{z}, \qquad dz = \frac{L}{2}d\bar{z}, \qquad \bar{p} = \frac{p}{p_{\rm dim}} \qquad p_{\rm dim} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \qquad (6.9)$$

Después de sustituir las expresiones anteriores en (6.4) y (6.5) se puede escribir:

$$F_{R} = \int_{-1}^{1} \int_{\underline{Q}} \underbrace{\mu N \left(\frac{R}{C_{r}}\right)^{2}}_{P} \overline{P} \cos\theta \underbrace{R d\theta}_{dx} \underbrace{\frac{L}{2}}_{dz} d\overline{z}$$
(6.10)

o bien:

$$F_{R} = \left[\mu N \left(\frac{R}{C_{r}} \right)^{2} \underset{\frac{D}{2}}{RL} \right] \underbrace{\frac{1}{2} \int_{-10}^{1} \int_{f_{R}}^{\pi} \overline{p} \cos\theta d\theta d\overline{z}}_{f_{R}}$$
(6.11)

después de simplificar:

$$F_{R} = \left[\mu N \left(\frac{R}{C_{r}}\right)^{2} DL\right] \underbrace{\frac{1}{4} \int_{-10}^{1\pi} \overline{p} Cos\theta d\theta d\overline{z}}_{f_{R}}$$
(6.12)

De manera similar para la fuerza en dirección transversal:

$$F_{T} = \left[\mu N \left(\frac{R}{C_{r}} \right)^{2} DL \right] \underbrace{\frac{1}{4} \int_{-10}^{1\pi} \overline{p} Sen\theta d\theta d\overline{z}}_{f_{T}}$$
(6.13)

De las ecuaciones (6.12) y (6.13) es posible identificar a las fuerzas radiales y transversales en forma adimensional para manejarlas más fácilmente, por lo tanto, estas pueden escribirse como:

$$f_{R} = \frac{F_{R}}{\mu N \left(\frac{R}{C_{r}}\right)^{2} DL}$$

$$f_{T} = \frac{F_{T}}{\mu N \left(\frac{R}{C_{r}}\right)^{2} DL}$$
(6.14)
(6.15)

<u>"Regresar a índice"</u> 53 donde:

$$f_R = \frac{1}{4} \int_{-10}^{1\pi} \overline{p} \cos\theta d\theta d\overline{z}$$
(6.16)

$$f_T = \frac{1}{4} \int_{-1}^{1} \int_{0}^{\pi} \overline{p} Sen\theta d\theta d\overline{z}$$
(6.17)

Una vez conocidas las fuerzas en la película de aceite, se puede conocer la capacidad de carga de una chumacera hidrodinámica, pues será igual a la resultante de las fuerzas en el lubricante dada por:

$$f = \sqrt{f_R^2 + f_T^2} = \left[\left(\frac{F_R}{\mu N (R/C_r)^2 DL} \right)^2 + \left(\frac{F_T}{\mu N (R/C_r)^2 DL} \right)^2 \right]^{1/2}$$
(6.18)

Sustituyendo (6.2) en (6.18) se puede escribir:

$$f = \sqrt{f_R^2 + f_T^2} = \left[\left(\frac{-W \cos \varphi}{\mu N (R/C_r)^2 DL} \right)^2 + \left(\frac{W \sin \varphi}{\mu N (R/C_r)^2 DL} \right)^2 \right]^{1/2} = \frac{W}{\mu N (R/C_r)^2 DL}$$
(6.19)

En rotodinámica existe un parámetro adimensional que tiene que ver con la capacidad de carga, este está definido por:

$$S = \frac{1}{f} = \frac{\mu N L D}{W} \left(\frac{R}{C_r}\right)^2 = \frac{F_{\text{dim}}}{W}$$
(6.20)

Este parámetro es conocido como el *número de Sommerfeld o carga adimensional,* se usa para caracterizar el funcionamiento de las chumaceras y se puede decir que, si el número de Sommerfeld aumenta, la capacidad de soportar carga disminuye y viceversa.

6.1. Fuerza de presión de una chumacera corta no presurizada.

La solución del campo de presión de una chumacera corta está dada por (5.29):

$$\overline{p} = \overline{p}_{Ocv} = -6\pi \left(\frac{L}{D}\right)^2 \varepsilon \frac{Sen\theta}{\left(1 + \varepsilon \cos\theta\right)^3} \left(\overline{z}^2 - 1\right)$$
(6.21)

las fuerzas de presión en una chumacera corta pueden ser calculadas a partir de (6.16) y (6.17).

$$f_{R} = \frac{1}{4} \int_{-10}^{1\pi} - 6\pi \left(\frac{L}{D}\right)^{2} \varepsilon \frac{Sen\theta}{\left(1 + \varepsilon \cos\theta\right)^{3}} \cdot \cos\theta \left(\bar{z}^{2} - 1\right) d\theta d\bar{z}$$
(6.22)

$$f_{T} = \frac{1}{4} \int_{-10}^{1\pi} -6\pi \left(\frac{L}{D}\right)^{2} \varepsilon \frac{Sen\theta}{\left(1 + \varepsilon Cos\theta\right)^{3}} \cdot Sen\theta\left(\bar{z}^{2} - 1\right) d\theta d\bar{z}$$
(6.23)

La solución de las ecuaciones (6.22) y (6.23) fue dada por [1] mediante la sustitución de Sommerfeld, obteniendo las fuerzas radiales y tangenciales en la película de lubricante de una chumacera corta en estado estacionario:

$$f_R = -\left(\frac{L}{D}\right)^2 \frac{4\pi\varepsilon^2}{\left(1-\varepsilon^2\right)^2} \tag{6.24}$$

$$f_T = \left(\frac{L}{D}\right)^2 \frac{\pi^2 \varepsilon}{\left(1 - \varepsilon^2\right)^{3/2}}$$
(6.25)

Las componentes de la fuerza de la película de aceite (6.24) y (6.25) pueden escribirse en el sistema coordenado (x,y) mediante la matriz de rotación [Q] correspondiente como se muestra a continuación:

$$\begin{pmatrix} f_x \\ f_y \end{pmatrix} = \underbrace{\begin{pmatrix} Cos \varphi_{O_{CV}} & -Sen \varphi_{O_{CV}} \\ Sen \varphi_{O_{CV}} & Cos \varphi_{O_{CV}} \end{pmatrix}}_{[Q]} \begin{pmatrix} f_R \\ f_T \end{pmatrix}$$
(6.26)

Donde:

$$Sen\varphi_{Ocv} = \frac{\pi\sqrt{1-\varepsilon_{Ocv}^2}}{\sqrt{16\varepsilon_{Ocv}^2 + \pi^2(1-\varepsilon_{Ocv}^2)}} \qquad Cos\varphi_{Ocv} = \frac{4\varepsilon_{Ocv}}{\sqrt{16\varepsilon_{Ocv}^2 + \pi^2(1-\varepsilon_{Ocv}^2)}}$$
(6.27)

Las expressions $Sen \varphi_{Ocv}$ y $Cos \varphi_{Ocv}$ se obtienen del ángulo de equilibrio, obtenido al sustituir Sustituyendo (6.24) y (6.25) en (6.12) y (6.13), posteriormente teniendo en cuenta las ecuaciones de equilibrio (6.2) y (6.3) se obtiene el ángulo de attitud (equilibrio) para una chumacera no presurizada [1],[10]:

$$Tan\varphi_{Ocv} = \frac{\pi\sqrt{1-\varepsilon_{Ocv}^2}}{4\varepsilon_{Ocv}}$$
(6.28)

Ángulo de equilibrio de una chumacera no presurizada.

Donde:

$$Sen\varphi_{Ocv} = \frac{\pi\sqrt{1-\varepsilon_{Ocv}^2}}{\xi} \qquad Cos\varphi_{Ocv} = \frac{4\varepsilon_{Ocv}}{\xi} \qquad \xi = \sqrt{16\varepsilon_{Ocv}^2 + \pi^2(1-\varepsilon_{Ocv}^2)} \qquad (6.29)$$

Después de realizar la multiplicación de (6.26) considerando (6.27) se obtiene las fuerzas en el sistema X-Y que calculan el ángulo de equilibrio en una chumacera hidrodinámica corta no presurizada (solución de Ocvirk):

$$f_{x,Ocv} = -\left(\frac{L}{D}\right)^2 \left[\frac{4\pi\varepsilon}{\left(1-\varepsilon}^2_{Ocv}\right)^2} \cos\varphi_{Ocv} + \frac{\pi^2\varepsilon_{Ocv}}{\left(1-\varepsilon}^2_{Ocv}\right)^{3/2}} \sin\varphi_{Ocv}\right]$$
(6.39)

fuerza en una chumacera corta no presurizada componente f_{x, Ocv.}

$$f_{y,Ocv} = -\left(\frac{L}{D}\right)^{2} \left[-\frac{4\pi\varepsilon_{Ocv}^{2}}{\left(1 - \varepsilon_{Ocv}^{2}\right)^{2}} Sen \varphi_{Ocv} + \frac{\pi^{2}\varepsilon_{Ocv}}{\left(1 - \varepsilon_{Ocv}^{2}\right)^{3/2}} Cos \varphi_{Ocv} \right]$$
(6.31)

Fuerza en una chumacera corta no presurizada componente fy, ocv

6.2. Fuerza de presión en una chumacera corta presurizada.

Es necesario calcular las fuerzas en la película de lubricante de una chumacera presurizada, debido a que serán utilizadas al realizar la sumatoria de fuerzas en el sistema de ecuaciones (6.2) [1], [10].

Las fuerzas de presión pueden ser calculadas de igual manera que en la chumacera no presurizada a partir de (6.16) y (6.17) a partir del campo de presión obtenido en (5.34). Recordar que el campo de presión es:

$$\overline{p}_{pres}(\overline{z},\theta) = \left(\frac{L}{D}\right)^2 \overline{q}_{prt} \frac{\delta\left[\theta - \left(\pi + \gamma - \varphi_{pres}\right)\right]}{2\left(1 + \varepsilon \cos\theta\right)^3} \left(1 - a\,\overline{z} - |\overline{z} - a|\right)$$
(6.32)

Por tanto, las fuerzas serán:

$$\hat{f}_{Rpres} = \frac{1}{4} \int_{-1}^{1} \int_{0}^{2\pi} \left(\frac{L}{D} \right)^2 \overline{q}_{prt} \frac{\delta \left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right]}{2 \left(1 + \varepsilon \cos \theta \right)^3} \left(1 - a\overline{z} - |\overline{z} - a| \right) \cdot \cos \theta \, d\theta \, d\overline{z}$$
(6.33)

$$\hat{f}_{Tpres} = \frac{1}{4} \int_{-1}^{1} \int_{0}^{2\pi} \left(\frac{L}{D} \right)^{2} \overline{q}_{prt} \frac{\delta \left[\theta - \left(\pi + \gamma - \varphi_{pres} \right) \right]}{2 \left(1 + \varepsilon \cos \theta \right)^{3}} \left(1 - a \, z - |z - a| \right) \cdot Sen\theta \, d\theta \, dz \tag{6.34}$$

Para calcular (6.33) y (6.34) se usará una propiedad de la teoría de distribuciones aplicada a la función Delta de Dirac resultando [1]:

$$\hat{f}_{Rpres} = -\left(\frac{L}{D}\right)^2 \overline{q}_{prt} \frac{(1-a^2)Cos(\gamma - \varphi_{pres})}{8\left[1 - \varepsilon Cos(\gamma - \varphi_{pres})\right]^3}$$
(6.35)

$$\hat{f}_{Tpres} = -\left(\frac{L}{D}\right)^2 \overline{q}_{prt} \frac{\left(1-a^2\right) Sen\left(\gamma - \varphi_{pres}\right)}{8\left[1 - \varepsilon \cos\left(\gamma - \varphi_{pres}\right)\right]^3}$$
(6.36)

<u>"Regresar a índice"</u> 56 Notar que las ecuaciones (6.35) y (6.36) representan a las fuerzas de la película de lubricante cuando se presuriza externamente en un puerto puntual, cuya ubicación axial y angular es arbitraria.

Multiplicando (6.35) y (6.36) por la matriz de rotación [Q] para pasar al plano x-y como se muestra a continuación:

$$\begin{pmatrix} \hat{f}_{xpres} \\ \hat{f}_{ypres} \end{pmatrix} = \underbrace{\begin{pmatrix} Cos \varphi_{pres} & -Sen \varphi_{pres} \\ Sen \varphi_{pres} & Cos \varphi_{pres} \end{pmatrix}}_{[\varrho]} \begin{pmatrix} \hat{f}_{Rpres} \\ \hat{f}_{Tpres} \end{pmatrix}$$
(6.37)

Después de realizar la multiplicación y utilizando algunas identidades trigonométricas, se puede escribir [1], [10]:

$$\hat{f}_{xpres} = -\left(\frac{L}{D}\right)^2 \overline{q}_{prt} \left(1 - a^2\right) \frac{Cos\gamma}{8\left[1 - \varepsilon \cos(\gamma - \varphi_{pres})\right]^3}$$
(6.38)

$$\hat{f}_{ypres} = -\left(\frac{L}{D}\right)^2 q_{prt} \left(1 - a^2\right) \frac{Sen\gamma}{8\left[1 - \varepsilon \cos(\gamma - \varphi_{pres})\right]^3}$$
(6.39)

Una vez encontradas las fuerzas horizontales y verticales en la película de aceite, será posible aplicar las condiciones de equilibrio en el sistema (x, y) y posteriormente determinar las nuevas posiciones que tomará el muñón en la chumacera como función de la presurización externa [1].

6.3. Ángulo de equilibrio de una chumacera presurizada.

El ángulo de equilibrio en una chumacera presurizada puede ser obtenido de igual manera que en el caso de la chumacera no presurizada, la posición de equilibrio se determina a partir de un balance de fuerzas totales, en donde [1], [10]:

$$W + F_{X,result} = 0$$

$$F_{Y,result} = 0$$
(6.40)

Las fuerzas que aparecen en (6.40), representan a la resultante en la película de aceite y están dadas por la contribución de las fuerzas de Ocvirk en el caso clásico y las fuerzas debidas a la presurización.

$$F_{X,result} = F_{X,Ocv} + F_{X,pres}$$
(6.41)

$$F_{Y,result} = F_{Y,Ocv} + F_{y,pres}$$
(6.42)

Sustituyendo (6.30), (6.31), (6.38) y (6.39) en (6.41) y (6.42) se obtiene que:

<u>"Regresar a índice"</u> 57

$$F_{X,result} = -F_{dim} \left(\frac{L}{D}\right)^2 \left[\frac{4\pi\varepsilon^2_{pres}}{\left(1 - \varepsilon^2_{pres}\right)^2} \cos\varphi_{pres} + \frac{\pi^2\varepsilon_{pres}}{\left(1 - \varepsilon^2_{pres}\right)^{3/2}} Sen\varphi_{pres}\right] + \Delta F_{pres} \left(\frac{L}{D}\right)^2 \frac{(1 - a^2)\cos(\pi + \gamma)}{8(1 + \varepsilon_{pres}\cos(\pi + \gamma - \varphi_{pres}))^3}$$
(6.43)

$$F_{Y,result} = F_{dim} \left(\frac{L}{D}\right)^2 \left[-\frac{4\pi\varepsilon^2_{pres}}{\left(1 - \varepsilon^2_{pres}\right)^2} Sen \varphi_{pres} + \frac{\pi^2 \varepsilon_{pres}}{\left(1 - \varepsilon^2_{pres}\right)^{3/2}} Cos \varphi_{pres} \right] + \Delta F_{pres} \left(\frac{L}{D}\right)^2 \frac{\left(1 - a^2\right) Sin(\pi + \gamma)}{8\left(1 + \varepsilon_{pres}Cos(\pi + \gamma - \varphi_{pres})\right)^3}$$

$$(6.44)$$

Sustituyendo Ecuaciones (6.43) y (6.44) en la ecuación (6.40) se obtiene la sumatoria de fuerzas en estado adimensional:

$$W - F_{\rm dim} \left(\frac{L}{D}\right)^2 \left[\frac{4\pi\varepsilon_{pres}^2}{\left(1 - \varepsilon_{pres}^2\right)^2} \cos\varphi_{pres} + \frac{\pi^2 \varepsilon_{pres}}{\left(1 - \varepsilon_{pres}^2\right)^{3/2}} \sin\varphi_{pres}\right] + \Delta F_{pres} \left(\frac{L}{D}\right)^2 \frac{(1 - a^2) \cos(\pi + \gamma)}{8(1 + \varepsilon_{pres} \cos(\pi + \gamma - \varphi_{pres}))^3} = 0$$

$$(6.45)$$

$$F_{\rm dim}\left(\frac{L}{D}\right)^2 \left[-\frac{4\pi\varepsilon^2_{pres}}{\left(1-\varepsilon^2_{pres}\right)^2}Sen\varphi_{pres} + \frac{\pi^2\varepsilon_{pres}}{\left(1-\varepsilon^2_{pres}\right)^{3/2}}Cos\varphi_{pres}\right] + \Delta F_{pres}\left(\frac{L}{D}\right)^2 \frac{(1-a^2)Sin(\pi+\gamma)}{8(1+\varepsilon_{pres}Cos(\pi+\gamma-\varphi_{pres}))^3} = 0 \quad (6.46)$$

Para facilitar los cálculos es necesario pasar las ecuaciones (6.45) y (6.46) que estén forma dimensional a forma adimensional, Para lo tanto es necesario dividir entre el peso del sistema (W).

Recordar que [1]:

$$S = \frac{F_{\rm dim}}{W}, \qquad \qquad f_{prt} = \frac{\Delta F_{pres}}{W}$$

Por lo tanto, las ecuaciones 6.45 y 6.46 quedan de la siguiente manera.

$$1 - S\left(\frac{L}{D}\right)^{2} \left[\frac{4\pi\varepsilon^{2}_{pres}}{(1 - \varepsilon^{2}_{pres})^{2}} \cos\varphi_{pres} + \frac{\pi^{2}\varepsilon_{pres}}{(1 - \varepsilon^{2}_{pres})^{3/2}} Sen\varphi_{pres}\right] + f_{prt}\left(\frac{L}{D}\right)^{2} \frac{(1 - a^{2})\cos(\pi + \gamma)}{8(1 + \varepsilon_{pres}\cos(\pi + \gamma - \varphi_{pres}))^{3}} = 0$$
(6.47)

$$S\left(\frac{L}{D}\right)^{2}\left[-\frac{4\pi\varepsilon^{2}_{pres}}{\left(1-\varepsilon^{2}_{pres}\right)^{2}}Sen\varphi_{pres}+\frac{\pi^{2}\varepsilon_{pres}}{\left(1-\varepsilon^{2}_{pres}\right)^{3/2}}Cos\varphi_{pres}\right]+f_{prt}\left(\frac{L}{D}\right)^{2}\frac{(1-a^{2})Sin(\pi+\gamma)}{8(1+\varepsilon_{pres}Cos(\pi+\gamma-\varphi_{pres}))^{3}}=0$$
(6.48)

Notar que la excentricidad y el ángulo de equilibrio aparecen con el subíndice "*pres*", hace referencia a que los valores cambiarán a medida que la presurización externa cambie. Las

ecuaciones (6.47) y (6.48) representan un sistema de dos ecuaciones no lineales, las cuales están en función de la excentricidad de equilibrio ε_{pres} y al ángulo de attitud φ_{pres} [1].

Para la solución de las ecuaciones (6.47) y (6.48), se optó por realizar el siguiente cambio de variables para simplificar la escritura:

$$A = \left(\frac{4\pi\varepsilon_{pres}^{2}}{(1-\varepsilon_{pres}^{2})^{2}} \cos\varphi_{pres} + \frac{\pi^{2}\varepsilon_{pres}}{(1-\varepsilon_{pres}^{2})^{3/2}} Sen\varphi_{pres}\right)$$
(6.49)

$$C = \frac{(1-a^2)\cos(\pi+\gamma)}{8(1+\varepsilon_{pres}\cos(\pi+\gamma-\varphi_{pres}))^3}$$
(6.50)

$$B = \left(-\frac{4\pi\varepsilon^2_{pres}}{(1-\varepsilon^2_{pres})^2}Sen\varphi_{pres} + \frac{\pi^2\varepsilon_{pres}}{(1-\varepsilon^2_{pres})^{3/2}}Cos\varphi_{pres}\right)$$
(6.51)

$$G = \frac{(1-a^2) Sin(\pi+\gamma)}{8(1+\varepsilon_{pres}Cos(\pi+\gamma-\varphi_{pres}))^3}$$
(6.52)

Por lo tanto, las ecuaciones (6.47) y (6.48) quedan de la siguiente manera:

$$1 - S\left(\frac{L}{D}\right)^2 A + f_{pn}\left(\frac{L}{D}\right)^2 C = 0$$
(6.53)

$$S\left(\frac{L}{D}\right)^2 B + f_{pn}\left(\frac{L}{D}\right)^2 G = 0$$
(6.54)

De la ecuación (6.54) se despeja a $S\left(\frac{L}{D}\right)^2$:

$$S\left(\frac{L}{D}\right)^2 = -f_{prt}\left(\frac{L}{D}\right)^2 \frac{G}{B}$$
(6.55)

Sustituyendo $S\left(\frac{L}{D}\right)^2$ en la ecuación (6.53) y simplificando se obtiene:

$$\left(\frac{D}{L}\right)^2 + f_{prr}\frac{GA}{B} + f_{prr}C = 0$$
(140)

Ecuación a partir del balance de fuerzas para determinar el ángulo de equilibrio (φ_{pres}), para el caso presurizado.

La ecuación 138 simplificada queda de la siguiente manera:

$$SB + f_{prt}G = 0 \tag{141}$$

Ecuación a partir del balance de fuerzas para determinar el número de Sommerfeld (S) para cada ángulo de equilibrio, para el caso presurizado.

La ecuación (140) nos permite determinar el ángulo de equilibrio para el caso presurizado (φ_{pres}) en forma adimensional, para posteriormente sustituirlo en la ecuación (141) y obtener el número de Sommerfeld para cada ángulo de equilibrio. Las obtenciones de estos datos permiten determinar posteriormente los coeficientes rotodinámicos en una chumacera presurizada.

Capítulo 7. Coeficientes rotodinámicos de una chumacera hidrodinámica corta (rigidez y amortiguamiento).

Los coeficientes rotodinámicos (rigidez y amortiguamiento) de una chumacera hidrodinámica, están altamente influenciados por la película de aceite que se forma entre el muñón de la chumacera que originalmente se usaba para evitar desgastes. Estos coeficientes rotodinámicos propios del aceite, influyen en el comportamiento dinámico de la chumacera. Las fuerzas que generan el muñón sobre la película de lubricante, son funciones no lineales de los desplazamientos y velocidad del centro del muñón [1], [2], [10].

Para llevar a cabo el cálculo de las velocidades críticas, las amplitudes de vibración del rotor, así como examinar su estabilidad contra vibraciones autoexcitadas, es fundamental que los desplazamientos y velocidades del muñón sean muy pequeñas con respecto a un punto (ϵ)y ángulo de equilibrio (ϕ), esta inestabilidad del muñón se puede presentar en forma de órbitas alrededor del punto y del ángulo de equilibrio, esta inestabilidad se le conoce como *látigo de aceite*, Fig.13. [1], [2].

Figura 13. Orbitas alrededor de un punto (ϵ) y ángulo de equilibrio (ϕ).

Si los desplazamientos y velocidades del muñón no son pequeños, las funciones que determina los coeficientes rotodinámicos salen de la zona lineal para la órbita alrededor del punto de equilibrio, por lo tanto, se vuelven inexactos.

En la fig.14 se observa la vista transversal de la chumacera, en la cual aparecen los coeficientes de rigideces y amortiguamientos, que simulan la conducta dinámica del fluido lubricante, en la literatura a los coeficientes de rigidez y amortiguamiento se les conoce como Coeficientes rotodinámicos [1]:

Figura 14. Coeficientes rotodinámicos (rigidez y amortiguamiento) de la película del lubricante en una chumacera hidrodinámica [1].

A partir de las ecuaciones de movimiento de un sistema rotor-chumacera se obtienen los coeficientes que corresponden a los de la película de lubricante (rigidez y amortiguamiento), estos parámetros cambian con la velocidad de rotación y por consecuencia también con la adición externa de presión. Se encuentra en la literatura que a medida que aumenta la velocidad uno de los coeficientes de rigidez puede tomar valores negativos causando inestabilidad, mientras que la adición de presión en el lubricante puede retardar o reducir las inestabilidades según su punto de presurización, e influenciar el comportamiento dinámico del sistema [1], [2], [4], [10].

En forma matemática es posible escribir el incremento de las fuerzas de la película de aceite dFxy dFy con respecto a su desplazamiento y velocidad en (x, y), de la siguiente manera [1][2][10]:

$$\begin{pmatrix} dFx \\ dFy \end{pmatrix} = - \begin{pmatrix} K_{xx} & K_{xy} \\ K_{yx} & K_{yy} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{pmatrix} \begin{pmatrix} \bullet \\ x \\ \bullet \\ y \end{pmatrix}$$
(7.1)

7.1. Coeficientes rotodinámicos para el caso clásico.

En la fig.15. Se representa las fuerzas radiales y tangenciales que se generan por el movimiento del muñón, asumiendo pequeños desplazamientos a partir de luna posición y velocidad del rotor en la película del lubricante.

Figura 15. Descomposición de fuerzas de la película de lubricante en chumaceras hidrodinámicas [1], [10]. Donde:

- O_B el centro de la chumacera
- O_{j s} representa la posición de equilibrio de la rotación del eje
- E₀ la excentricidad dimensional (o bien E₀ en forma adimensional)
- ϕ_0 el ángulo de equilibrio

Las componentes de la fuerza del lubricante a lo largo del sistema de coordenadas radial y tangencial (R, T) son $(FR)_0$ y $(F_T)_0$. Conformé a las componentes de la Fig. 15, las fuentes: [1][2][4] Desarrollaron la definición clásica de los coeficientes rotodinámicos.

Tomando en cuenta la matriz de rigidez adimensional \overline{K} y la matriz de amortiguamiento adimensional \overline{C} , junto con las fuerzas radiales f_R y tangenciales f_T desarrolladas en [1]:

$$\overline{K} = \begin{pmatrix} \frac{\partial f_R}{\partial \varepsilon} & \frac{\partial f_R}{\varepsilon \partial \varphi} - \frac{\partial f_T}{\varepsilon} \\ \frac{\partial f_T}{\varepsilon} & \frac{\partial f_T}{\varepsilon \partial \varphi} - \frac{\partial f_R}{\varepsilon} \end{pmatrix}$$
(7.2)

Matriz de coeficientes rotodinámicos adimensionales de rigidez \overline{K} .

$$\overline{C} = \begin{pmatrix} \frac{\partial f_R}{\partial \left(\frac{\varepsilon}{\omega_J}\right)} & -\frac{2f_R}{\varepsilon} \\ \frac{\partial f_T}{\partial \left(\frac{\varepsilon}{\omega_j}\right)} & -\frac{2f}{\varepsilon} \\ \frac{\partial f_T}{\partial \left(\frac{\varepsilon}{\omega_j}\right)} & -\frac{T}{\varepsilon} \end{pmatrix}$$
(7.3)

Matriz de coeficientes rotodinámicos adimensionales de amortiguamiento $\overline{C}[1]$.

$$f_{R} = \left(\frac{L}{D}\right)^{2} \left[\frac{-4\pi\varepsilon^{2}}{\left(1-\varepsilon^{2}\right)^{2}} - \frac{2\pi^{2}\left(1+2\varepsilon^{2}\right)}{\left(1-\varepsilon^{2}\right)^{5/2}} \frac{\frac{\varepsilon}{\omega}}{\left(1-\frac{2\dot{\varphi}}{\omega}\right)}\right]$$
(7.4)
$$f_{T} = \left(\frac{L}{D}\right)^{2} \left[\frac{\pi^{2}\varepsilon}{\left(1-\varepsilon^{2}\right)^{3/2}} + \frac{8\pi\varepsilon}{\left(1-\varepsilon^{2}\right)^{2}} \frac{\frac{\varepsilon}{\omega}}{\left(1-\frac{2\dot{\varphi}}{\omega}\right)}\right]$$
(7.5)

Fuerzas adimensionales radiales y transversales en estado dinámico $\mathcal{E} \neq 0$, $\varphi \neq 0$ para una chumacera corta.[1].

Las matrices adimensionales \overline{K} y \overline{C} , se relacionan con las matrices de rigidez y de amortiguamiento K y C, por medio de [1]:

$$\overline{K} = \frac{C_r}{LDN\mu \left(\frac{R}{C_r}\right)^2} K$$
(7.6)

$$\overline{C} = \frac{C_r \omega}{LDN\mu \left(\frac{R}{C_r}\right)^2} C$$
(7.8)

Notar que las matrices K y C tiene dimensiones de (fuerza/longitud) y (fuerza / velocidad) respectivamente, por lo que es conveniente expresar los coeficientes rotodinámicos en la forma adimensional:

$$\overline{\overline{K}} = \frac{C_r}{W} K, \qquad \overline{\overline{C}} = \frac{C_r \omega}{W} C$$
(7.9)

Siendo W la carga externa sobre el muñón. Sustituyendo (7.9) en (7.6) y (7.8) se puede obtener:

$$\overline{\overline{K}} = S\overline{\overline{K}}, \qquad \overline{\overline{C}} = S\overline{\overline{C}}$$
(7.10)

Donde S es el número de Sommerfeld, el cual puede ser expresado como [1], [10]:

$$S = \left(\frac{D}{L}\right)^2 \frac{(1-\varepsilon)^2}{\varepsilon \pi \sqrt{16\varepsilon^2 + \pi^2 (1-\varepsilon^2)}}$$
(7.11)

Finalmente, los coeficientes rotodinámicos se expresan en el sistema de coordenadas (X, Y) mediante la matriz de rotación [Q], la cual relaciona el sistema (R, T) con el sistema de coordenadas (X, Y) como se muestra a continuación [1], [2], [10]:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \underbrace{\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}}_{|\varrho|} \begin{pmatrix} R \\ T \end{pmatrix}$$
(7.12)

Por lo tanto, los coeficientes rotodinámicos se pueden calcular en el sistema (X, Y) a través de [Q], realizando las siguientes operaciones matriciales:

$$\widetilde{K} = -[Q] \left[\overline{\overline{K}}\right] [Q]^T \tag{7.13}$$

$$\widetilde{C} = -[Q] \begin{bmatrix} \overline{c} \\ \overline{c} \end{bmatrix} [Q]^T$$
(7.14)

Donde:

$$Q = \begin{pmatrix} Cos\phi & -Sen\phi \\ Sen\phi & Cos\phi \end{pmatrix}$$
(7.15)

$$Q^{T} = \begin{pmatrix} Cos\phi & Sen\phi \\ -Sen\phi & Cos\phi \end{pmatrix}$$
(7.16)

La tabla 7. Muestra los coeficientes rotodinámicos de la película de aceite para el caso clásico (solución de Ocvirk) de una chumacera hidrodinámica.

Tabla 7. Coeficientes de rigidez y amortiguamiento de una chumacera corta (caso clásico) en el sistema de coordenadas x-y.

$\widetilde{k}_{xx} = \frac{4[\pi^{2} + (32 + \pi^{2})\varepsilon^{2} + 2(16 - \pi^{2})\varepsilon^{4}]}{(1 - \varepsilon^{2})[\pi^{2} + (16 - \pi^{2})\varepsilon^{2}]^{3/2}}$	$\widetilde{c}_{xx} = \frac{2\pi \left[\pi^2 + 2\left(24 - \pi^2\right)\varepsilon^2 + \pi^2\varepsilon^4\right]}{\varepsilon\sqrt{1 - \varepsilon^2} \left[\pi^2 + \left(16 - \pi^2\right)\varepsilon^2\right]^{3/2}}$
$\widetilde{k}_{xy} = \frac{\pi \left[\pi^2 + \left(32 + \pi^2\right)\varepsilon^2 + 2\left(16 - \pi^2\right)\varepsilon^4\right]}{\varepsilon \sqrt{1 - \varepsilon^2} \left[\pi^2 + \left(16 - \pi^2\right)\varepsilon^2\right]^{3/2}}$	$\widetilde{c}_{xy} = \frac{8 \left[\pi^2 + 2 (\pi^2 - 8) \varepsilon^2 \right]}{\left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^{3/2}}$
$\widetilde{k}_{yx} = \frac{\pi \left[-\pi^2 + 2\pi^2 \varepsilon^2 + (16 - \pi^2)\varepsilon^4\right]}{\varepsilon \sqrt{1 - \varepsilon^2} \left[\pi^2 + (16 - \pi^2)\varepsilon^2\right]^{3/2}}$	$\widetilde{c}_{yx} = \frac{8 \left[\pi^2 + 2 \left(\pi^2 - 8 \right) \varepsilon^2 \right]}{\left[\pi^2 + \left(16 - \pi^2 \right) \varepsilon^2 \right]^{3/2}}$
$\widetilde{k}_{yy} = \frac{4 \left[2\pi^2 + (16 - \pi^2) \varepsilon^2 \right]}{\left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^{3/2}}$	$\widetilde{c}_{yy} = \frac{2\pi \left(1-\varepsilon^2\right)^{1/2} \left[\pi^2 + 2\left(\pi^2 - 8\right)\varepsilon^2\right]}{\varepsilon \left[\pi^2 + \left(16-\pi^2\right)\varepsilon^2\right]^{3/2}}$

7.2. Coeficientes rotodinámicos para el caso presurizado.

Para la obtención de los coeficientes rotodinámicos para el caso presurizado es necesario conocer las fuerzas radial y tangencial correspondientes a la presurización en una chumacera hidrodinámica, los cuales son [1], [10]:

$$f_{Rpres} = -\left(\frac{L}{D}\right)^{2} \bar{q}_{pn} \left[\frac{\left(1-a^{2}\right)Cos(\gamma-\varphi)}{8\left[1-\varepsilon Cos(\gamma-\varphi)\right]^{3}}\frac{1}{\left(1-\frac{2\dot{\varphi}}{\omega}\right)}\right]$$
(7.17)
$$f_{Tpres} = -\left(\frac{L}{D}\right)^{2} \bar{q}_{pn} \left[\frac{\left(1-a^{2}\right)Sen(\gamma-\varphi)}{8\left[1-\varepsilon Cos(\gamma-\varphi)\right]^{3}}\frac{1}{\left(1-\frac{2\dot{\varphi}}{\omega}\right)}\right]$$
(7.18)

Fuerzas adimensionales radiales y transversales a la presurización en estado dinámico $\mathcal{E} \neq 0$, $\varphi \neq 0$, para una chumacera corta presurizada con un puerto puntual cuya ubicación axial y angular es arbitraria respectivamente [1].

La determinación de los coeficientes rotodinámicos correspondientes a la presurización en la película de aceite en una chumacera hidrodinámica, pueden llevarse a cabo sustituyendo (7.17) y (7.18) en (7.2) y (7.3):

$$\overline{K} = \begin{pmatrix} \frac{\partial f_{Rpres}}{\partial \varepsilon} & \frac{\partial f_{Rpres}}{\varepsilon \partial \varphi} - \frac{\partial f_{Tpres}}{\varepsilon} \\ \frac{\partial f_{Tpres}}{\varepsilon} & \frac{\partial f_{Tpres}}{\varepsilon \partial \varphi} - \frac{\partial f_{Rpres}}{\varepsilon} \end{pmatrix}$$
(7.19)

Matriz de coeficientes rotodinámicos adimensionales de rigidez \overline{K} , debido a la presurización[10].

$$\overline{C} = \begin{pmatrix} \frac{\partial f_{Rpres}}{\langle \frac{\varepsilon}{\omega_{J}} \rangle} & -\frac{2f_{Rpres}}{\varepsilon} \\ \frac{\partial f_{Tpres}}{\langle \frac{\varepsilon}{\omega_{j}} \rangle} & -\frac{2f_{Tpres}}{\varepsilon} \\ \frac{\partial f_{\varepsilon}}{\langle \frac{\varepsilon}{\omega_{j}} \rangle} & -\frac{2f_{Tpres}}{\varepsilon} \end{pmatrix}$$
(7.20)

Matriz de coeficientes rotodinámicos adimensionales de amortiguamiento \overline{C} , debido a la presurización [10].

Al igual que en el caso clásico las matrices \overline{K} y \overline{C} se pueden expresan en forma adimensional y multiplicada por el número de Sommerfeld de la siguiente manera[10]:

$$\overline{\overline{K}}_{pres} = S\overline{\overline{K}}_{pres}, \qquad \overline{\overline{C}}_{pres} = S\overline{\overline{C}}_{pres}$$
(7.21)

Donde S es el número de Sommerfeld, el cual puede ser expresado como [1], [10]:

$$S = \left(\frac{D}{L}\right)^2 \frac{(1-\varepsilon)^2}{\varepsilon \pi \sqrt{16\varepsilon^2 + \pi^2 (1-\varepsilon^2)}}$$
(7.22)

Multiplicando por la matriz de rotación [Q] para trasladarse al plano (X, Y):

$$\widetilde{K}_{pres} = -[Q] \begin{bmatrix} \overline{K} \\ \overline{K} \end{bmatrix} [Q]^T$$
(7.23)

$$\widetilde{C}_{pres} = -[Q] \begin{bmatrix} \Xi \\ C \end{bmatrix} [Q]^T$$
(7.24)

Donde:

$$Q = \begin{pmatrix} Cos\phi & -Sen\phi \\ Sen\phi & Cos\phi \end{pmatrix}$$
(7.25)

$$Q^{T} = \begin{pmatrix} Cos\phi & Sen\phi \\ -Sen\phi & Cos\phi \end{pmatrix}$$
(7.26)

La tabla 8. Muestra los coeficientes rotodinámicos por efecto de la presurización en la película de aceite (caso presurizado) en una chumacera hidrodinámica presurizada tipo corta [1].

<u>"Regresar a índice"</u> 68 Tabla 8. Coeficientes rotodinámicos (rigidez y amortiguamiento por efecto de la presurización) de una chumacera corta presurizada externamente con un puerto puntual, cuya ubicación axial (a) y angular (γ)[1], Debido a cuestiones de espacio en la nomenclatura.

$$\begin{split} \widetilde{k}_{XXpres} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 4\varepsilon^2 + \pi^2 - \varepsilon^2 \pi^2 + \left[-\pi^2 + \varepsilon^2 (16 + \pi^2) \right] \cos 2(\gamma - \varphi) - 8\varepsilon \sqrt{1 - \varepsilon^2} \pi Sen 2(\gamma - \varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^4} \\ \widetilde{k}_{XYpres} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 8\varepsilon \sqrt{1 - \varepsilon^2} \pi Cos 2(\gamma - \varphi) + \left[-\pi^2 + \varepsilon^2 (16 + \pi^2) \right] Sen 2(\gamma - \varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^4} \\ \widetilde{k}_{YXpres} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 8\varepsilon \sqrt{1 - \varepsilon^2} \pi Cos 2(\gamma - \varphi) + \left[-\pi^2 + \varepsilon^2 (16 + \pi^2) \right] Sen 2(\gamma - \varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^4} \\ \widetilde{k}_{YXpres} &= \frac{3(-1+a^2)(-1+\varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 8\varepsilon \sqrt{1 - \varepsilon^2} \pi Cos 2(\gamma - \varphi) + \left[-\pi^2 + \varepsilon^2 (16 + \pi^2) \right] Sen 2(\gamma - \varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^4} \\ \widetilde{C}_{XXpres} &= \frac{3(-1+a^2)(-1+\varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 4\varepsilon Cos(\gamma - \varphi) - \sqrt{1 - \varepsilon^2} \pi Sen(\gamma - \varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^4} \\ \widetilde{C}_{XXpres} &= \frac{-(-1+a^2)(1 - \varepsilon^2)^{5/2} \widetilde{q}_{pn} \left\{ 4\varepsilon Cos(\gamma - \varphi) - \sqrt{1 - \varepsilon^2} \pi Sen(\gamma - \varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^3} \\ \widetilde{C}_{YXpres} &= \frac{-(-1+a^2)(1 - \varepsilon^2)^{5/2} \widetilde{q}_{pn} \left\{ 4\varepsilon Sen(\gamma - \varphi) + \sqrt{1 - \varepsilon^2} \pi Sen(\gamma - \varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^3} \\ \widetilde{C}_{YXpres} &= \frac{-(-1+a^2)(1 - \varepsilon^2)^{5/2} \widetilde{q}_{pn} \left\{ 4\varepsilon Sen(\gamma - \varphi) + \sqrt{1 - \varepsilon^2} \pi Cos(\gamma - \varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^3} \\ \widetilde{C}_{YXpres} &= -\frac{(-1+a^2)(1 - \varepsilon^2)^{5/2} \widetilde{q}_{pn} \left\{ 4\varepsilon Sen(\gamma - \varphi) + \sqrt{1 - \varepsilon^2} \pi Cos(\gamma - \varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^3} \\ \widetilde{C}_{YXpres} &= -\frac{(-1+a^2)(-1 + \varepsilon^2)^2 \widetilde{q}_{pn} \left\{ 4\varepsilon Sen(\gamma - \varphi) + \sqrt{1 - \varepsilon^2} \pi Cos(\gamma - \varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16 + \pi^2) \right]^{3/2} \left[-1 + \varepsilon Cos(\gamma - \varphi) \right]^3} \end{aligned}$$

Los coeficientes de la tabla 8 son válidos para la inyección de lubricante en un puerto con ubicación axial (*a*) y angular (γ) arbitraria. Lo único que es necesario conocer es la dependencia entre la excentricidad de equilibrio (ε) y el nuevo ángulo de equilibrio (ϕ) para posteriormente sustituir en cada fórmula de la tabla 8, y tener los coeficientes rotodinámicos como función de la excentricidad y de la intensidad de presurización \overline{q}_{prt} .

Notar que los coeficientes obtenidos corresponden al efecto de la presurización únicamente por lo que la obtención de los coeficientes rotodinámicos totales de una chumacera hidrodinámica presurizada tipo corta se obtendrán de la suma de coeficientes obtenidos en el caso clásico (tabla 7) y del efecto de la presurización (tabla 8).

Capítulo 8. Velocidad umbral de estabilidad.

La obtención de la velocidad umbral de estabilidad permite conocer la máxima velocidad de operación que puede alcanzar el rotor antes de que ocurran amplitudes de vibración insostenibles, las cuales causan daños inevitablemente al exceder la velocidad umbral. A diferencia de la velocidad critica las cual se presenta su máxima amplitud como múltiplos o submúltiplos de la frecuencia fundamental del sistema y estas velocidades se pueden ser superadas sin necesariamente causar daños al sistema [1][2][4].

Las inestabilidades dinámicas en las turbomáquinas se pueden asociar con la variación de presión en algún fluido en las chumaceras, o bien alrededor de una parte circunferencial del rotor. Se caracteriza la inestabilidad por la vibración de alta amplitud del sistema rotor chumacera y generalmente ocurren a diferentes velocidades de rotación del eje [1].

La fuente de vibración más común en maquinaria rotodinámica es el desbalance del rotor, este produce una vibración síncrona con la velocidad de rotación del eje, pero si se observa la señal mediante un transductor, esta no es una onda senoidal pura, la cual se compone de diferentes frecuencias y una de estas es la componente síncrona del desbalance. El resto de las frecuencias de la señal de respuesta puede ser clasificadas como subsíncronas (frecuencias menores a la operación del eje) o supersíncronas (frecuencias mayores a la velocidad de operación del eje). [1][2].

8.1. Criterio de Lienard-Chipard.

El criterio de Lienard- Chipard se basa en el análisis de estabilidad de Routh-Hurwitz, el cual se usa para poder predecir si un sistema lineal es estable o no, de igual forma sirve para poder calcular la velocidad umbral de estabilidad; es decir la velocidad a la cual un sistema cambia su comportamiento dinámico de estable a inestable, sin embargo se vuelve complicado conforme aumentan los grados de libertad [1], para esto Lienard-Chipard establece que para un polinomio $P_n(\lambda)$ sea estable, es necesario y suficiente que una de las 2 condiciones siguientes se cumplan:

$$1.-\Delta_1 > 0, \Delta_3 > 0, \Delta_5 > 0, \dots, \Delta_{2m-1} > 0$$
(8.1)

2.-
$$\Delta_2 > 0, \Delta_4 > 0, \Delta_6 > 0, \dots, \Delta_{2m-2} > 0$$
 (8.2)

Donde $\Delta_1, \Delta_2, \Delta_3, ..., \Delta_m$ son determinantes formados por los coeficientes del polinomio de Hurwitz. Por lo anterior el análisis se simplifica de una manera considerable, ya que al aplicar el criterio de Lienard-Chipard, el número de determinantes por analizar se reduce a la mitad y si se consideran los determinantes impares, es Δ_1 simplemente se reduce al análisis de signos, donde $\Delta_1, ..., \Delta_m$ contiene los mínimos de la matriz de Hurwitz

Partiendo de las ecuaciones de movimiento en forma adimensional y aplicando el análisis de Routh-Hurwitz se obtiene el siguiente polinomio conforme a [1], [10]:

$$P_4 = \lambda^4 + b_3 \lambda^3 + b_2 \lambda^3 + b_1 \lambda + b_0 \qquad (b_i > 0)$$
(8.3)

Donde:

$$b_0 = \frac{\Delta(k)}{p^4}, \quad b_1 = \frac{\Delta(c,k)}{p^4}, \quad b_2 = \frac{p^2 \sum(k) + \Delta(c)}{p^4}, \quad b_3 = \frac{\sum(c)}{p^2}, \quad b_4 = 1$$
(8.4)

Aplicando el criterio de estabilidad de Lienard-Chipard al polinomio (5.22) se obtiene que para que el sistema sea estable es necesario y suficiente que se cumplan las siguientes condiciones.

$$\Delta_{1} = \begin{bmatrix} b_{1} \end{bmatrix} > 0, \qquad \Delta_{3} = \begin{bmatrix} b_{1} & b_{0} & b_{0} \\ b_{3} & b_{2} & b_{1} \\ 0 & b_{4} & b_{3} \end{bmatrix} > 0$$
(8.5)

De (8.4) se nota que $\Delta_1 > 0$, entonces desarrollando a Δ_2 se obtiene la condición de estabilidad dada por:

$$b_1 b_2 b_3 > b_0 b_3^2 + b_1^2 b_4 \tag{8.6}$$

Para que un sistema lineal sea estable la parte real de los valores propios de los coeficientes de su matriz característica son. Si la parte real de los valores propios se vuelve positiva, entones el sistema tiende a la inestabilidad. En el cambio de negativo a positivo la parte real del valor propio pasa por cero, cuando esto ocurre se obtiene la velocidad umbral de estabilidad. Dichas velocidades pueden obtenerse de (8.6) haciendo:

$$b_1 b_2 b_3 = b_0 b_3^2 + b_1^2 b_4 \tag{8.7}$$

Sustituyendo (8.4) en (8.7) resulta:

$$\frac{\Delta(c,k)}{p^4} \frac{p^2 \sum(k) + \Delta(c)}{p^4} \frac{\sum(c)}{p^2} = \frac{\Delta(k)}{p^4} \left(\frac{\sum(c)}{p^2}\right)^2 + \left(\frac{\Delta(c,k)}{p^4}\right)^2$$

Resolviendo para p^2 se obtiene la velocidad umbral de estabilidad para un sistema rotorchumacera que considera a un rotor de eje rígido, obteniendo:

$$p^{2} = p_{umb}^{2} = \frac{\sum (c)\Delta(c)\Delta(c,k)}{\Delta(k)\sum^{2}(c) + \Delta^{2}(c,k) - \sum (c)\sum (k)\Delta(c,k)}$$
(8.8)

Ecuación para la obtención de la velocidad umbral de forma directa, para una configuración de eje rígido del modelo de Jeffcott, que está soportado por chumaceras hidrodinámicas flexibles [1].

Donde:

$$\sum(c) = C_{XX} + C_{YY} \tag{8.9}$$

$$\sum(k) = K_{XX} + K_{YY} \tag{8.10}$$

$$\Delta(c) = C_{XX}C_{YY} - C_{YX}C_{XY}$$

$$(8.11)$$

$$\Delta(k) = K_{XX}K_{YY} - K_{YX}K_{XY}$$
(8.12)

$$\Delta(c,k) = C_{XX}K_{YY} + C_{YY}K_{XX} - C_{XY}K_{YX} - C_{YX}K_{XY}$$
(8.13)

Capítulo 9. Metodología

En esta sección se describirá la metodología usada para poder obtener las características dinámicas de una chumacera hidrodinámica corta (caso clásico) mediante la técnica de movilidad, así como los coeficientes rotodinámicos para una chumacera corta presurizada (Caso presurizado).

9.1. Descripción general.

Figura 16. Diagrama de flujo de la metodología utilizada para la obtención de las características dinámicas de una chumacera hidrodinámica corta (caso clásico) mediante la técnica de movilidad y los coeficientes rotodinámicos para una chumacera corta presurizada (caso Presurizado).

9.2. Descripción del método de movilidad dimensional y su aplicación en una chumacera hidrodinámica corta (Caso clásico).

Partiendo de la teoría de lubricación hidrodinámica, se tomó el modelo matemático de la ecuación de Reynolds Ec. (2.8), este modelo es considerado la base de estudio para el análisis hidrodinámico en chumaceras.

$$\frac{\partial}{\partial\theta} \left(h^3 \frac{\partial p}{\partial\theta} \right) + R^2 \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \mu R^2 C_r \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen\theta \right]$$
(9.1)

Ecuación general de Reynolds para una chumacera hidrodinámica

Apartar de la clasificación de chumaceras, el modelo de la ecuación de Reynolds se aplicó al análisis de una chumacera hidrodinámica geométricamente cilíndrica circular tipo corta, el modelo que describe esta chumacera está dado por la Ec. (2.14).

$$\frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 12 \mu C_r \left[\varepsilon \cos\theta + \varepsilon \left(\phi - \frac{\omega}{2} \right) Sen\theta \right]$$
(9.2)

Ecuación de Reynolds para una chumacera corta en estado dinámico

Con condiciones de frontera:

$$0 \le z \le L, \ 0 \le \theta \le 2\pi, \ h(\theta) = C_r(1 + \varepsilon Cos\theta)$$

$$(9.3)$$

$$p(-L/2)=0, \quad p(L/2)=0, \quad p(\theta+2\pi)=p(\theta)$$
 (9.4)

La solución del campo de presión está dada por la Ec. (2.16) según las condiciones de frontera:

$$p = \frac{6\mu C_r}{h^3} \left[\mathcal{E}Cos\theta + \mathcal{E}(\phi - \omega)Sen\theta \right] \times \left[z^2 - \frac{L^2}{4}\right]$$
(9.5)

Campo de presión para una chumacera corta en estado dinámico.

Para dar solución al campo de presión es necesario expresar la relación de excentricidad de radios $\dot{\varepsilon}$ y el ángulo equilibrio $\dot{\phi}$ en función de las componentes del vector movilidad M_{ε} y M_{φ} :

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu L D} M_{\varepsilon}$$
(9.6)

$$\phi = \frac{F(\frac{c}{R})^2}{\mu L D \varepsilon} M_{\phi} + \overline{\omega}$$

$$\overline{\omega} = \frac{\omega}{2} , \quad \omega = \omega_1 + \omega_2$$
(9.7)

$$\overline{\omega} = \frac{\omega}{2}$$
, $\omega = \omega_1 + \omega$

(9.8)

El vector de movilidad esta descrito por la solución numérica de Bróker que se muestra en [3,5,6,7] la cual tiene condiciones según el sentido de la fuerza, resultando las Ec. (9.6) y (9.7) de la siguiente manera:

Para la aproximación numérica de Booker para cuando F>0

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi (1 - \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right]$$
(9.9)

$$\phi = \frac{F(\frac{c}{R})^2}{\mu L D \varepsilon} \left[-\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi (1 - \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} \sin\varphi \right] + \overline{\omega}$$
(9.10)

Para la aproximación numérica de Booker para cuando F<0

$$\varepsilon = \frac{F(\frac{c}{R})^2}{\mu LD} \left[\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi (1 + \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right]$$
(9.11)

<u>"Regresar a índice"</u> 75

$$\phi = \frac{F(\frac{c}{R})^2}{\mu L D \varepsilon} \left[-\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi (1 + \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right] + \overline{\omega}$$
(9.12)

Notar que $\varepsilon y \phi$ están en función de (ε , ϕ), las cuales varían con el tiempo, lo cual permite solucionar estas ecuaciones con las condiciones iniciales que se deseen. Para el caso de estudio presente se trabajará para una condición de fuerza<0, la solución de estas ecuaciones (9.11) y (9.12) se resolvieron simultáneamente en el software Mathematica, bajo características reales de una chumacera descrita en la tabla 9.

Longitud L	0.74 m.
Diámetro D	.317 m.
Radio R	.1585 m.
Claro radial	.00035
velocidad	3600 rpm.
Inicial excentricidad ε_0	.2
Inicial ángulo de attitud φ_0	0 rad.
Tiempo de corrida	.034 s.
fuerza	34000 N.

Tabla 9. Características de una chumacera hidrodinámica.

Una vez resueltos los sistemas de ecuaciones (9.11) y (9.12) en el software Mathematica, se obtuvo:

La trayectoria del eje con respecto al tiempo.

La variación de ε y ϕ con respecto al tiempo.

El grosor mínimo (h_{min}) de la película de lubricante a partir de la expresión:

$$h_{\min} = c(1 - \varepsilon)$$
(9.13)

Las posiciones de equilibrio.

La excentricidad en estado estable.

El ángulo de equilibrio en estado estable.

La variación del campo a lo largo y ancho de la chumacera en cualquier instante de tiempo para una F<0 se obtiene sustituyendo las ecuaciones (9.11) y (9.12) en (9.5):

$$p = \frac{6\mu C_r}{h^3} \left[\frac{F(c/R)^2}{\mu LD} \left[\frac{(1+\varepsilon\cos\varphi)^{5/2}}{\pi (L/D)^2} \cos\varphi + \frac{4\varepsilon\sin\varphi(1+\varepsilon\cos\varphi)^{3/2}}{\pi^2 (L/D)^2} sen\varphi \right] Cos\theta + \left[\varepsilon \left[\frac{F(c/R)^2}{\mu LD\varepsilon} \left[-\frac{(1+\varepsilon\cos\varphi)^{5/2}}{\pi (L/D)^2} \cos\varphi + \frac{4\varepsilon\sin\varphi(1+\varepsilon\cos\varphi)^{3/2}}{\pi^2 (L/D)^2} sen\varphi \right] \right] Sen\theta \right] \times \left[z^2 - \frac{L^2}{4} \right]$$
(9.14)

El campo de presión máximo que se presenta en una chumacera hidrodinámica se presenta cuando h es mínima.

9.3. Método de movilidad adimensional para una chumacera hidrodinámica corta (caso clásico).

Para trabajar en forma más general y facilitar los cálculos es necesario dimensionar el vector de movilidad. En rotodinámica existe un parámetro adimensional que tiene que ver con la capacidad de carga el cual se conoce como el número de *Sommerfeld o carga adimensional*, el cual se usa para caracterizar el funcionamiento de las chumaceras y está definido por la Ec. (9.15):

$$S = \frac{1}{f} = \frac{\mu N L D}{W} \left(\frac{R}{C_r}\right)^2 = \frac{F_{\text{dim}}}{W}$$
(9.15)

Se considera que: si el número de Sommerfeld aumenta la capacidad de soportar carga disminuye y viceversa.

Realizando las siguientes sustituciones de la Ec. (9.9) a la Ec. (9.12):

$$\frac{F(\frac{c}{R})^2}{\mu L D \varepsilon} = \frac{FC^2}{\mu L D \varepsilon R^2} = \frac{FN}{\varepsilon F_{\text{dim}}} = \frac{-WN}{\varepsilon F_{\text{dim}}} = \frac{N}{-S\varepsilon} = \frac{\omega}{-2\pi S\varepsilon}$$
(9.16)

$$\frac{F(\frac{C}{R})^2}{\mu LD} = \frac{FC^2}{\mu LDR^2} = \frac{FN}{F_{\rm dim}} = \frac{-WN}{F_{\rm dim}} = \frac{N}{-S} = \frac{\omega}{-2\pi S}$$
(9.17)

Siendo:

 \sim

$$S = \frac{F_{\text{dim}}}{W} = \frac{\mu NDL}{W} \left(\frac{R}{C_r}\right)^2, \ p_{\text{dim}} = \mu N \left(\frac{R}{C_r}\right)^2 = \mu \left(\frac{\omega}{2\pi}\right) \left(\frac{R}{C_r}\right)^2 \qquad W + F = 0$$
(9.18)

Se obtiene:

<u>"Regresar a índice"</u> 77 Para la aproximación numérica de Booker para cuando F>0

г

_

_

_

$$\varepsilon = \frac{\omega}{-2\pi S} \left[\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi (1 - \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right]$$
(9.19)

$$\phi = \frac{\omega}{-2\pi S\varepsilon} \left[-\frac{\left(1 - \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi - \frac{4\varepsilon \sin\varphi \left(1 - \varepsilon \cos\varphi\right)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} \sin\varphi \right] + \overline{\omega}$$
(9.20)

Para la aproximación numérica de Booker para cuando F<0

$$\varepsilon = \frac{\omega}{-2\pi S} \left[\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi (1 + \varepsilon \cos\varphi)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} \sin\varphi \right]$$
(9.21)

$$\phi = \frac{\omega}{-2\pi S\varepsilon} \left[-\frac{\left(1 + \varepsilon \cos\varphi\right)^{5/2}}{\pi \left(\frac{L}{D}\right)^2} \cos\varphi + \frac{4\varepsilon \sin\varphi \left(1 + \varepsilon \cos\varphi\right)^{3/2}}{\pi^2 \left(\frac{L}{D}\right)^2} sen\varphi \right] + \overline{\omega}$$
(9.22)

Resolviendo en software matemática las ecuaciones adimensionales para cuando la fuerza es F<0 y para los números de Sommerfeld: (S=0.001, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 1.1, 1.3, 1.5, 1.8, 2, 2.3, 2.5, 2.8, 3, 3.5, 4, 5, 7, 8, 10, 20, 30), se obtuvo:

La gráfica de la curva de excentricidad versus número de Sommerfeld,

La gráfica de Ángulo de equilibrio versus Número de Sommerfeld.

Así como la trayectoria del centro del rotor dentro de la chumacera respecto al tiempo para cada número de Sommerfeld.

Posiciones de equilibrio.

La excentricidad ε en estado estable.

El ángulo de equilibrio φ en estado estable.

La variación de ε y ϕ con respecto al tiempo.

9.4. Obtención de las posiciones de equilibrio (excentricidad ε_{pres} y ángulo φ_{pres}) para una chumacera presurizada (caso presurizado).

Partiendo del balance de fuerzas totales Ec. (6.47) y (6.48), el cual representan un sistema de dos ecuaciones no lineales, con respecto a la excentricidad de equilibrio \mathcal{E}_{pres} y al ángulo de equilibrio \mathcal{P}_{pres} [1]. La solución de este sistema de ecuaciones nos permitirá determinar el ángulo de equilibrio y posteriormente el número de Sommerfeld.

$$1 - S\left(\frac{L}{D}\right)^{2} \left[\frac{4\pi\varepsilon^{2}_{pres}}{\left(1 - \varepsilon^{2}_{pres}\right)^{2}} \cos\varphi_{pres} + \frac{\pi^{2}\varepsilon_{pres}}{\left(1 - \varepsilon^{2}_{pres}\right)^{3/2}} \operatorname{Sen}\varphi_{pres}\right] + f_{prt}\left(\frac{L}{D}\right)^{2} \frac{(1 - a^{2}) \cos\left(\pi + \gamma\right)}{8(1 + \varepsilon_{pres} \cos\left(\pi + \gamma - \varphi_{pres}\right))^{3}} = 0$$

$$(9.23)$$

$$S\left(\frac{L}{D}\right)^{2}\left[-\frac{4\pi\varepsilon^{2}_{pres}}{(1-\varepsilon^{2}_{pres})^{2}}Sen\varphi_{pres}+\frac{\pi^{2}\varepsilon_{pres}}{(1-\varepsilon^{2}_{pres})^{3/2}}Cos\varphi_{pres}\right]+f_{prt}\left(\frac{L}{D}\right)^{2}\frac{(1-a^{2})Sin(\pi+\gamma)}{8(1+\varepsilon_{pres}Cos(\pi+\gamma-\varphi_{pres}))^{3}}=0$$
(9.24)

Se realiza el siguiente cambio de variables para simplificar la escritura:

$$A = \left(\frac{4\pi\varepsilon_{pres}^{2}}{(1-\varepsilon_{pres}^{2})^{2}}\cos\varphi_{pres} + \frac{\pi^{2}\varepsilon_{pres}}{(1-\varepsilon_{pres}^{2})^{3/2}}\operatorname{Sen}\varphi_{pres}\right)$$
(9.25)

$$C = \frac{(1-a^2)\cos(\pi+\gamma)}{8(1+\varepsilon_{pres}\cos(\pi+\gamma-\varphi_{pres}))^3}$$
(9.26)

$$B = \left(-\frac{4\pi\varepsilon_{pres}^{2}}{(1-\varepsilon_{pres}^{2})^{2}}Sen\varphi_{pres} + \frac{\pi^{2}\varepsilon_{pres}}{(1-\varepsilon_{pres}^{2})^{3/2}}Cos\varphi_{pres}\right)$$
(9.27)

$$G = \frac{(1-a^2) Sin(\pi+\gamma)}{8(1+\varepsilon_{pres}Cos(\pi+\gamma-\varphi_{pres}))^3}$$
(9.28)

Por lo tanto, las ecuaciones (9.23) y (9.24) quedan de la siguiente manera:

$$1 - S\left(\frac{L}{D}\right)^{2} A + f_{pn}\left(\frac{L}{D}\right)^{2} C = 0$$
(9.29)
$$S\left(\frac{L}{D}\right)^{2} B + f_{pn}\left(\frac{L}{D}\right)^{2} G = 0$$
(9.30)

<u>"Regresar a índice"</u> 79 De la ecuación (9.30) se despeja a $S\left(\frac{L}{D}\right)^2$:

$$S\left(\frac{L}{D}\right)^2 = -f_{pn}\left(\frac{L}{D}\right)^2 \frac{G}{B}$$
(9.31)

Sustituyendo $S\left(\frac{L}{D}\right)^2$ en la ecuación (9.29) y simplificando se obtiene:

$$\left(\frac{D}{L}\right)^2 + f_{pn}\frac{GA}{B} + f_{pn}C = 0$$
(9.32)

Ecuación a partir del balance de fuerzas para determinar el ángulo de equilibrio (φ_{pres}), para el caso

presurizado.

La ecuación 138 simplificada queda de la siguiente manera:

$$SB + f_{prt}G = 0 \tag{9.33}$$

Ecuación a partir del balance de fuerzas para determinar el número de Sommerfeld (S) para cada ángulo de equilibrio, para el caso presurizado.

La ecuación (9.32) nos permite determinar el ángulo de equilibrio para el caso presurizado (φ_{pres}) en forma adimensional, para posteriormente sustituirlo en la ecuación (9.33) y obtener el número de Sommerfeld para cada ángulo de equilibrio. Las obtenciones de estos datos permiten determinar posteriormente los coeficientes rotodinámicos en una chumacera presurizada.

A partir de las siguientes variables de entrada y con ayuda del software Wólfram Mathematica se construyeron las tablas del capítulo 10.3:

Fuerza de presurización (f_{prt}) con valores de:

 $f_{prt}=1, 5, 10, 20, 50, 100, f_{prt}\approx 0.$ Excentricidad presurizada, con valores de: .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05. La relación longitud diámetro (L/D) que corresponde a una chumacera corta:

(L/D) = (1/4).

Para el caso de estudio de esta tesis se seleccionaron los siguientes ángulos de presurización:

 $\gamma = 11\pi/6, \pi/6, 5\pi/6, 7\pi/6$

Nota: observar que $f_{prt}\neq 0$, debido a la restricción de la ecuación (6.55), (El número de Sommerfeld físicamente solo puede ser cero cuando no hay desplazamiento).

9.5. Obtención de los coeficientes rotodinámicos (caso clásico y caso presurizado).

La obtención de los coeficientes rotodinámicos se puede obtener a partir de la tabla 7 del capítulo 7.1, la cual muestra los coeficientes rotodinámicos de la película de aceite para el caso clásico (solución de Ocvirk) de una chumacera hidrodinámica y solo basta saber la excentricidad (ϵ) que tomara el centro del rotor dentro de la chumacera en estado estable el cual depende del número de Sommerfeld (*S*):

Tabla 10. Coeficientes de rigidez y amortiguamiento de una chumacera corta (caso clásico) en el sistema de coordenadas x-y.

$\widetilde{k}_{xx} = \frac{4 \left[\pi^{2} + (32 + \pi^{2}) \varepsilon^{2} + 2(16 - \pi^{2}) \varepsilon^{4} \right]}{(1 - \varepsilon^{2}) \left[\pi^{2} + (16 - \pi^{2}) \varepsilon^{2} \right]^{3/2}}$	$\widetilde{c}_{xx} = \frac{2\pi \left[\pi^2 + 2\left(24 - \pi^2\right)\varepsilon^2 + \pi^2\varepsilon^4\right]}{\varepsilon\sqrt{1 - \varepsilon^2} \left[\pi^2 + \left(16 - \pi^2\right)\varepsilon^2\right]^{3/2}}$
$\widetilde{k}_{xy} = \frac{\pi \left[\pi^2 + (32 + \pi^2)\varepsilon^2 + 2(16 - \pi^2)\varepsilon^4\right]}{\varepsilon \sqrt{1 - \varepsilon^2} \left[\pi^2 + (16 - \pi^2)\varepsilon^2\right]^{3/2}}$	$\widetilde{c}_{xy} = \frac{8 \left[\pi^2 + 2 (\pi^2 - 8) \varepsilon^2 \right]}{\left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^{3/2}}$
$\widetilde{k}_{yx} = \frac{\pi \left[-\pi^2 + 2\pi^2 \varepsilon^2 + (16 - \pi^2)\varepsilon^4\right]}{\varepsilon \sqrt{1 - \varepsilon^2} \left[\pi^2 + (16 - \pi^2)\varepsilon^2\right]^{3/2}}$	$\widetilde{c}_{yx} = \frac{8 \left[\pi^2 + 2 \left(\pi^2 - 8 \right) \varepsilon^2 \right]}{\left[\pi^2 + \left(16 - \pi^2 \right) \varepsilon^2 \right]^{3/2}}$
$\widetilde{k}_{yy} = \frac{4 \left[2\pi^2 + (16 - \pi^2) \varepsilon^2 \right]}{\left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^{3/2}}$	$\widetilde{c}_{yy} = \frac{2\pi \left(1-\varepsilon^2\right)^{1/2} \left[\pi^2 + 2\left(\pi^2 - 8\right)\varepsilon^2\right]}{\varepsilon \left[\pi^2 + \left(16-\pi^2\right)\varepsilon^2\right]^{3/2}}$

La determinación de la excentricidad en estado estable se describe en el capítulo 9.3 de manera gráfica con el método de movilidad para cuándo $\dot{\varepsilon} = 0$ y $\dot{\varphi} = 0$, o en el capítulo 9.4, cuando las ecuaciones obtenidas a partir del balance de fuerzas se evalúan para una $f_{prt} \approx 0$, de esa manera se

obtendrán la posición de equilibrio del rotor para distintos números de Sommerfeld (*S*). La evaluación de la tabla 10 se muestra en el capítulo 9.4.

Para la obtención de los coeficientes rotodinámicos de una chumacera presurizada, se llevó a cabo la evolución de la tabla 8 del capítulo 7.2 la cual es la responsable de determinar los coeficientes rotodinámicos por efecto de la presurización en la película de aceite (caso presurizado) en una chumacera hidrodinámica presurizada tipo corta en las coordenadas (*X*, *Y*) [1]:

Tabla 11. Coeficientes rotodinámicos (rigidez y amortiguamiento por efecto de la presurización) de una chumacera corta presurizada externamente con un puerto puntual, cuya ubicación axial (a) y angular (γ)[1]. Debido a cuestiones de espacio en la nomenclatura se omitió el subíndice (pres), por lo tanto: ε = prez, ϕ = prez.

$$\begin{split} \widetilde{k}_{\chi\chi_{pres}} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 6\varepsilon^2 + \pi^2 - \varepsilon^2 \pi^2 + \left[-\pi^2 + \varepsilon^2 (16+\pi^2) \right] \cos 2(\gamma-\varphi) - 8\varepsilon \sqrt{1-\varepsilon^2} \pi \operatorname{Sen2}(\gamma-\varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^4} \\ \widetilde{k}_{\chi\gamma_{pres}} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 8\varepsilon \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}2(\gamma-\varphi) + \left[-\pi^2 + \varepsilon^2 (16+\pi^2) \right] \operatorname{Sen2}(\gamma-\varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^4} \\ \widetilde{k}_{\chi\gamma_{pres}} &= -\frac{3(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 8\varepsilon \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}2(\gamma-\varphi) + \left[-\pi^2 + \varepsilon^2 (16+\pi^2) \right] \operatorname{Sen2}(\gamma-\varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^4} \\ \widetilde{k}_{\gamma\gamma_{pres}} &= \frac{3(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 8\varepsilon \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}2(\gamma-\varphi) + \left[-\pi^2 + \varepsilon^2 (16+\pi^2) \right] \operatorname{Sen2}(\gamma-\varphi) \right\}}{16\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^4} \\ \widetilde{C}_{\chi\gamma_{pres}} &= \frac{(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 4\varepsilon \operatorname{Cos}(\gamma-\varphi) - \sqrt{1-\varepsilon^2} \pi \operatorname{Sen}(\gamma-\varphi) \right\}}{4\varepsilon^2 \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^3} \\ \widetilde{C}_{\chi\gamma_{pres}} &= -\frac{(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 4\varepsilon \operatorname{Sen}(\gamma-\varphi) - \sqrt{1-\varepsilon^2} \pi \operatorname{Sen}(\gamma-\varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^3} \\ \widetilde{C}_{\gamma\gamma_{pres}} &= -\frac{(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 4\varepsilon \operatorname{Sen}(\gamma-\varphi) + \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}(\gamma-\varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^3} \\ \widetilde{C}_{\gamma\gamma_{pres}} &= -\frac{(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 4\varepsilon \operatorname{Sen}(\gamma-\varphi) + \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}(\gamma-\varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^3} \\ \widetilde{C}_{\gamma\gamma_{pres}} &= -\frac{(-1+a^2)(-1+\varepsilon^2)^2 \overline{q}_{pn} \left\{ 4\varepsilon \operatorname{Sen}(\gamma-\varphi) + \sqrt{1-\varepsilon^2} \pi \operatorname{Cos}(\gamma-\varphi) \right\}}{\varepsilon \pi \left[\pi^2 - \varepsilon^2 (-16+\pi^2) \right]^{3/2} \left[-1+\varepsilon \operatorname{Cos}(\gamma-\varphi) \right]^3} \end{aligned}$$

Los coeficientes la tabla 11 son válidos para la inyección de lubricante en un puerto con ubicación axial (*a*) y angular (γ) arbitraria. Lo único que es necesario conocer es la dependencia entre la excentricidad de equilibrio (*p_{reso}*) y el nuevo ángulo de equilibrio (*p_{reso}*) los cuales se determinaron en el capítulo 10.3 con las ecuaciones obtenidas a partir del balance de fuerzas para distintas intensidades de presurización \overline{q}_{prt} y los distintos puertos de Presurización. De esta manera se

obtuvieron los coeficientes rotodinámicos como función de la excentricidad y de las intensidades de presurización \overline{q}_{prt} los cuales se muestran en capítulo 10.4

La suma de los resultados obtenidos de la matriz de rigidez del caso clásico (solución de Ocvirk, tabla 10) con la solución de la matriz de rigidez debido a la presurización (caso presurizado, tabla 11), dan como resultado la matriz de rigidez para una de una chumacera presurizada, la cual puede escribirse como [10]:

$$\overline{K}_{TOT} = \begin{bmatrix} \widetilde{K}_{XX} & \widetilde{K}_{XY} \\ \widetilde{K}_{YX} & \widetilde{K}_{YY} \end{bmatrix} + \begin{bmatrix} \widetilde{K}_{XXpres} & \widetilde{K}_{XYpres} \\ \widetilde{K}_{YXpres} & \widetilde{K}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{K}_{XX} + \widetilde{K}_{XXpres} & \widetilde{K}_{XY} + \widetilde{K}_{XYpres} \\ \widetilde{K}_{YX} + \widetilde{K}_{YXpres} & \widetilde{K}_{YY} + \widetilde{K}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{K}_{XXpresT} & \widetilde{K}_{XYpresT} \\ \widetilde{K}_{YXpresT} & \widetilde{K}_{YYpresT} \end{bmatrix}$$
(9.34)

O bien:

$$\overline{K}_{TOT} = \begin{bmatrix} \widetilde{K}_{OCV} \end{bmatrix} + \begin{bmatrix} \widetilde{K}_{PRES} \end{bmatrix} = \begin{bmatrix} \widetilde{K}_{XX} + \widetilde{K}_{XXpres} & \widetilde{K}_{XY} + \widetilde{K}_{XYpres} \\ \widetilde{K}_{YX} + \widetilde{K}_{YXpres} & \widetilde{K}_{YY} + \widetilde{K}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{K}_{XXpresT} & \widetilde{K}_{XYpresT} \\ \widetilde{K}_{YXpresT} & \widetilde{K}_{YYpresT} \end{bmatrix}$$
(9.35)

Lo mismo es para la matriz de amortiguamiento [10]:

$$\overline{C}_{TOT} = \begin{bmatrix} \widetilde{C}_{XX} & \widetilde{C}_{XY} \\ \widetilde{C}_{YX} & \widetilde{C}_{YY} \end{bmatrix} + \begin{bmatrix} \widetilde{C}_{XXpres} & \widetilde{C}_{XYpres} \\ \widetilde{C}_{YXpres} & \widetilde{C}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{C}_{XX} + \widetilde{C}_{XXpres} & \widetilde{C}_{XY} + \widetilde{C}_{XYpres} \\ \widetilde{C}_{YX} + \widetilde{C}_{YXpres} & \widetilde{C}_{YY} + \widetilde{C}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{C}_{XXpresT} & \widetilde{C}_{XYpresT} \\ \widetilde{C}_{YXpresT} & \widetilde{C}_{YYpresT} \end{bmatrix}$$
(9.36)
O bien:

$$\overline{C}_{TOT} = \begin{bmatrix} \widetilde{C}_{OCV} \end{bmatrix} + \begin{bmatrix} \widetilde{C}_{PRES} \end{bmatrix} = \begin{bmatrix} \widetilde{C}_{XX} + \widetilde{C}_{XXpres} & \widetilde{C}_{XY} + \widetilde{C}_{XYpres} \\ \widetilde{C}_{YX} + \widetilde{C}_{YXpres} & \widetilde{C}_{YY} + \widetilde{C}_{YYpres} \end{bmatrix} = \begin{bmatrix} \widetilde{C}_{XXpresT} & \widetilde{C}_{XYpresT} \\ \widetilde{C}_{YXpresT} & \widetilde{C}_{YYpresT} \end{bmatrix}$$
(9.37)

Los resultados obtenidos corresponden a los coeficientes de una chumacera hidrodinámica presurizada tipo corta en las coordenadas (X, Y).

Nota: este proceso se debe realizar para cada puerto y para cada intensidad de presurización por separado.

En el capítulo 10.4 se muestra los coeficientes rotodinámicos obtenidos a partir de la solución de las matrices de rigidez \overline{K}_{TOT} y amortiguamiento \overline{C}_{TOT} , o bien de la suma de los coeficientes obtenidos de la tabla (10) con los coeficientes de la tabla(11) para cada puerto y cada intensidad de presurización.

9.6 Obtención de la velocidad umbral de estabilidad.

La obtención de la velocidad umbral de velocidad o velocidad máxima de operación estable para un sistema rotor-chumacera que considera a un rotor de eje rígido, se obtuvo a partir de la ecuación (8.8):

$$p^{2} = p_{umb}^{2} = \frac{\sum (c)\Delta(c)\Delta(c,k)}{\Delta(k)\sum^{2}(c) + \Delta^{2}(c,k) - \sum (c)\sum (k)\Delta(c,k)}$$
(9.38)

Ecuación para la obtención de la velocidad umbral de forma directa, para una configuración de eje rígido del modelo de Jeffcott, que está soportado por chumaceras hidrodinámicas flexibles [1].

Donde:

$$\sum (c) = C_{XX} + C_{YY} \tag{9.39}$$

$$\sum(k) = K_{XX} + K_{YY} \tag{9.40}$$

$$\Delta(c) = C_{XX}C_{YY} - C_{YX}C_{XY}$$
(9.41)

$$\Delta(k) = K_{XX}K_{YY} - K_{YX}K_{XY}$$
(9.42)

$$\Delta(c,k) = C_{XX}K_{YY} + C_{YY}K_{XX} - C_{XY}K_{YX} - C_{YX}K_{XY}$$
(9.43)

La ecuación 9.38 se obtiene a partir del criterio de Lienard-Chipard (capítulo 8.1), y se aplicó en la solución de las matrices de rigidez \overline{K}_{TOT} y amortiguamiento \overline{C}_{TOT} , que son los coeficientes de una chumacera hidrodinámica presurizada tipo corta a diferentes intensidades de presurización y distintos puntos de inyección de lubricante. Las velocidades críticas de operación (velocidad umbrales) se muestran en el capítulo 10.5.

Capítulo 10. Resultados.

En esta sección se darán a conocer todos los resultados obtenidos con la metodología mostrada en el capítulo 9, cabe mencionar que los resultados obtenidos no se encuentran en algún otro trabajo de investigación, siendo esta una de las razones de la importancia de este trabajo de tesis.

10.1. Características en estado dinámico de una chumacera hidrodinámica corta por el método de movilidad.

En este subcapítulo se muestran los resultados descritos en la metodología del subcapítulo 9.2, que consisten en el análisis dinámico de una chumacera hidrodinámica corta de geometría cilíndrica circular, los datos para el análisis se muestran en la tabla 9 y se aplicaron en las ecuaciones (9.11) y (9.12) del método de movilidad.

La solución se realizó de manera computacional con el software Wólfram Mathematica y se obtuvieron los siguientes resultados:

En las figs. 17-20 Se realizó el análisis a un tiempo de 0.034 s. Que corresponden a 2 ciclos a una velocidad de 3600 rpm.

Figura 18. Excentricidad en &y vs. t(s).

Las figs. 17 y 18 son las componentes ε_x y ε_y de la ecxentricidad ε en las cuales se puede observar como varian respecto al tiempo y tienen una tendencia a disminuir, esta tendencia se puede observar mejor en la fig. 19, la cual muestra la excentricidad (ε)en funcion del angulo φ .

Figura 19. Excentricidad ε x10 -2 vs. φ del centro del eje.

La trayectoria del eje se puede observar graficando ε_x vs ε_y tomando en cuenta las condiciones iniciales $\varepsilon_{0=.2}$ y $\varphi_{0=0}$ podemos notar el inicio de la trayectoria y como tiende a un punto cercano del origen de las coordenadas fig. 20.

Figura 20. Excentricidad en & vs. & del centro del eje.

Para poder obtener la variación del grosor de la película de lubricante h vasta con pasar de medidas adimensionales a reales con la siguiente expresión:

$$h_{\min} = c(1 - \varepsilon) \tag{10.1}$$

En la Fig. 19 se muestra la variación del grosor de la película de lubricante *h*, mostrando un pequeño incremento conforme aumenta el tiempo. Cabe destacar que si el grosor de la película disminuye y es menor a la altura promedio del claro radial ($\varepsilon \approx 1$) del cojinete, el contacto metal con metal se presenta. Por lo que se deben tomar las medidas necesarias para evitar este contacto que es causa de vibraciones y daños en el equipo rotodinámico. Desde el punto de vista de diseño, el grosor mínimo de un soporte hidrodinámico liso debe ser de 2.5 μ m y en la práctica el

<u>"Regresar a índice"</u> 86 valor mínimo seria de al menos de $(1.0-1.5) \times 2.5 \ \mu m$ [8]. En la fig. (21) se muestra que aún está dentro del valor mínimo.

Figura 21. Variación del grosor de la película de lubricante (hmin X10-6).

Para obtener en el tiempo de establecimiento del sistema se ha optado por un método gráfico al aumentar el tiempo de simulación en Wólfram Mathematica 11.0 hasta que la variación de $\varepsilon \approx 0$, Figs. 22-24, el cual es aproximadamente en .25 segundos que equivalen a 15 ciclos del rotor.

Figura 23. $\varphi(t)$. Tiempo de estabilización 0.25 s.

<u>"Regresar a índice"</u> 87

Figura 24. $\varepsilon(\phi)$. Debido a que el tiempo de estabilización se alcanza en .25 s. y ϕ max \approx 39, sería el ángulo de la posición final del centro del rotor en el cual estaría variando ε hasta que se estabilice.

Figura 25. Excentricidad en ɛx vs. ɛy del centro del eje para un tiempo de simulación de 1 segundo.

Figura 26. Variación del grosor de la película de lubricante para un tiempo de simulación de 1 segundo.

<u>"Regresar a índice"</u> 88

En la Fig. 25 se logra apreciar la posición final del centro del rotor en {0.02731x, -0.0009506y}, la cual será la posición en estado estable. Cabe mencionar que las condiciones iniciales solo afectan en los primeros instantes de simulación, como se muestra en al figs. 27 y 28 donde las condiciones iniciales son de $\varepsilon_{0=.3}$ y $\varphi_{0=1}$ y la posición final del rotor es la misma y el tiempo de estabilización no se nota afectado.

Figura 27. Excentricidad en εx vs. εy del centro del eje para un tiempo de simulación de 1 segundo con condiciones iniciales de $\varepsilon 0=.3$ y $\varphi 0=1$.

Figura 28. ε [t]. Tiempo de simulación 1 segundo con condiciones iniciales de ε 0=.3 y φ 0=1.

10.2. Características en estado dinámico para chumaceras hidrodinámicas cortas por el método de movilidad en forma adimensional.

Para el caso del método de movilidad en forma adimensional las ecuaciones (9.21) y (9.22) se resolvieron en el software Wólfram Mathematica para los siguientes números de Sommerfeld: (S=0.001, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 1.1,1.3, 1.5, 1.8, 2, 2.3, 2.5, 2.8, 3, 3.5, 4, 5, 7, 8, 10, 20, 30), de los cuales se obtuvo la excentricidad y ángulo de equilibrio mostrados en la tabla 12:

Sommerfeld	Excentricidad	Ángulo de equilibrio
<i>(s)</i>	(ɛ)	(φ)
0.001	0.9796	9.26472755
0.005	0.9571	13.9228744
0.008	0.9438	15.7047732
0.01	0.9373	16.6215056
0.03	0.8926	22.0588751
0.05	0.8623	25.1528472
0.08	0.8272	28.4760024
0.1	0.8078	30.2579012
0.3	0.6789	40.7315697
0.5	0.5976	46.822111
0.8	0.5095	53.2564271
1	0.464	56.4993682
1.1	0.4441	57.9260331
1.3	0.4086	60.4470474
1.5	0.3776	62.7388786
1.8	0.3389	65.3171886
2	0.3166	67.036062
2.3	0.2879	69.0414143
2.5	0.2714	70.3019215
2.8	0.2489	71.7916117
3	0.2361	72.8802315
3.5	0.209	74.828288
4	0.1861	76.4325699
5	0.153	78.9535842
7	0.1126	81.6931643
8	0.0985	83.0109672
10	0.0801	83.8704039
20	0.04037	87.3229772
30	0.0269	87.9213788

Tabla 12. Excentricidad y ángulo de equilibrio para números de Sommerfeld, caso adimensional.

Recordar que en rotodinámica existe un parámetro adimensional que tiene que ver con la capacidad de carga el cual se conoce como el número de *Sommerfeld o carga adimensional*, el cual se usa para caracterizar el funcionamiento de las chumaceras y está definido por:

$$S = \frac{1}{f} = \frac{\mu N L D}{W} \left(\frac{R}{C_r}\right)^2 = \frac{F_{\rm dim}}{W}$$
(10.2)

Para conocer las posiciones finales del rotor dentro de la chumacera para cada número de Sommerfeld, se gráfico en forma polar los valores presentados en la tabla 12.

Figura 29. Posiciones finales del rotor dentro de una chumacera hidrodinámica tipo corta en estado estable para distintos números de Sommerfeld.

Se compararon los resultados obtenidos con los datos presentados en las fuentes [1] y [10], los cuales presentan resultados para el caso de una chumacera hidrodinámica corta sin presurización cuando $F_{prt}=0$, que corresponden al caso clásico o no presurizado:

		F _{prt} =0
Sommerfeld	Excentricidad	Ángulo de equilibrio
<i>(s)</i>	(8)	(φ)
0.013	0.9499	14.47
0.02	0.9397	15.82
0.05	0.9031	20.44
0.10	0.8624	24.85
0.20	0.8129	29.05
0.30	0.7706	32.91
0.50	0.7072	38.13
0.80	0.6375	43.49
1	0.6	46.31
1.30	0.5522	49.85
1.40	0.538	50.89
1.50	0.5245	51.88
2	0.466	56.14
2.30	0.4365	58.28
2.50	0.4187	59.57
3	0.3793	62.42
3.50	0.3461	64.82
4	0.3176	66.88
5	0.272	70.19
7	0.2092	74.75
8	0.187	76.3
10	0.1538	78.78
15	0.1073	82.16
30	0.0661	85.14

Tabla 13. Posiciones de equilibrio para una chumacera hidrodinámica presurizada tipo corta, para cuando la intensidad de presurización es cero (Fprt=0).

La comparación de las tablas 12 y 13 se realizó de manera gráfica como muestran en la figura 30:

Se observan en la figura 30, que los puntos tienden a seguir la misma tendencia conforme varea el número de Sommerfeld, por lo que el método de movilidad puede considerarse aceptable para rápidas soluciones gráficas de un sistema rotor-chumacera, presentado mínimas variaciones y simplificando en gran manera la carga computacional comparado con otros métodos.

En la figura 31 se puede observar como es la variación de la excentricidad (ϵ) con respecto al número de Sommerfeld (S), se puede notar que a menor número de Sommerfeld la excentricidad aumenta indicando una disminución en la capacidad de carga.

Figura 31. Número de Sommerfeld vs. Excentricidad Para una chumacera corta.

En la figura 32 se puede observar como es la variación del ángulo de equilibrio (ϵ) con respecto al número de Sommerfeld (S), se puede notar que a menor número de Sommerfeld el ángulo de equilibrio es pequeño indicando que se acerca el rotor a la línea horizontal de la chumacera (eje x) y conforme incrementa el número de Sommerfeld el ángulo se aproxima a los 90 grados, indicando que se aproxima el rotor a la línea vertical del eje (y).

Figura 32. Número de Sommerfeld vs. ángulo de equilibrio para una chumacera corta.

Para observar con claridad el afecto que tiene la magnitud del número de Sommerfeld (*S*) en el comportamiento dinámico de la chumacera se realizó las siguientes simulaciones en forma adimensional:

Figura 33. Trayectoria del centro de un rotor en una chumacera hidrodinámica corta, para un S=10, L=1, D=4, ω =120 π .

Figura 34. Trayectoria del centro de un rotor en una chumacera hidrodinámica corta, para un S=0.001, L=1, D=4, ω =120 π .

<u>"Regresar a índice"</u> 95 Nota: la posición inicial del rotor solo afecta en los primeros instantes de simulación de las trayectorias y no influye en la posición final del rotor.

Figura 35. Velocidad con la que varía la excentricidad (ε) y ángulo de equilibrio (ϕ) en función del tiempo, para S=10, L=1, D=4, ω =120 π .

Figura 36. Velocidad con la que varía la excentricidad (ε) y ángulo de equilibrio (ϕ)en función del tiempo, para S=0.001, L=1, D=4, ω =120 π .

Figura 37. Variación del ángulo ϕ respecto al tiempo, para S=10, L=1, D=4, ω =120 π .

Figura 38. Variación del ángulo φ respecto al tiempo, para S=0.001, L=1, D=4, ω =120 π .

Figura 39. Variación del grosor de la película de lubricante respecto al tiempo., para S=10, L=1, D=4, ω=120π.

Figura 40. Variación del grosor de la película de lubricante respecto al tiempo., para S=0.001, L=1, D=4, ω =120 π .

El grosor mínimo está definido por $h_{\min} = c(1 - \varepsilon)$, desde el punto de vista de diseño, el grosor mínimo de un soporte hidrodinámico liso debe ser de 2.5 μ m.

Notar que en las Fig. 33, 35,37 y 39 se realizaron con un número de Sommerfeld (S=10), presentan mayor número de fluctuaciones, las magnitudes de las fluctuaciones son más grande, y el tiempo para alcanzar la estabilidad del rotor, es mayor en comparación con las figuras 34, 36, 38 y 40, las cuales se realizaron con un número de Sommerfeld (S=0.001). Esto indica que entre más grande es el número de Sommerfeld se vuelve más inestable el sistema ante perturbaciones, sin embargo, el grosor mínimo para (s=10) es más grande comparado con el caso de (s=0.001) (ver figuras 39 y 40). Con esto se demuestra la eficiencia del método de movilidad para rápidas soluciones gráficas y se pueden usar para cuestiones de diseño.

10.3. Excentricidad y ángulo de equilibrio a partir del balance de fuerzas en una chumacera corta presurizada a $\gamma=11\pi/6$, $\pi/6$, $5\pi/6$ y $7\pi/6$.

Partiendo de las Ecs. (9.32, 9.33) y de los cambios de variable (Ecs. 9.25-9.28. Se aplicó las siguientes variables de entrada en forma adimensional, las cuales corresponden a una chumacera hidrodinámica corta presurizada:

Fuerza de presurización (f_{prt}) con valores de:

 $f_{prt}=1, 5, 10, 20, 50, 100, f_{prt}\approx 0.$

Excentricidad presurizada, con valores de:

 $.05 \le \epsilon_{pres} \ge .95$ en lapsos de .05.

La relación longitud diámetro (L/D) que corresponde a una chumacera corta:

$$(L/D) = (1/4).$$

Para el caso de estudio de esta tesis se seleccionaron los siguientes ángulos de presurización:

$$\gamma = 11\pi/6, \pi/6, 5\pi/6, 7\pi/6$$

Nota: observar que $f_{prt}\neq 0$, debido a la restricción de la ecuación (139), (El número de Sommerfeld físicamente solo puede ser cero cuando no hay desplazamiento).

La solución se realizó en el software Wólfram Mathematica, de los resultados obtenidos se construyeron las siguientes tablas:

							$\gamma = \pi / 6$							
ε _{pres}	fprt	≈0	fprt	=1	fprt	=5	fprt=	-10	fprt=	20	fprt=	=50	fprt=	100
	S _{pres}	ϕ_{pres}	S _{pres}	φ _{pres}	S _{pres}	φ _{pres}	S _{pres}	φ _{pres}	S _{pres}	ϕ_{pres}	S _{pres}	φ _{pres}	S _{pres}	φ _{pres}
0.05	32.2359	86.3528	31.9987	86.1074	31.0537	85.0853	29.8809	83.7097	27.5704	80.5774	21.1407	66.6754	16.179	21.3737
0.1	15.8397	82.7078	15.7104	82.4352	15.1939	81.2916	14.5497	79.729	13.2694	76.0631	9.66889	57.7125	8.36552	3.92089
0.15	10.2553	79.0668	10.1606	78.758	9.78102	77.4493	9.30457	75.625	8.34658	71.1627	5.69222	44.801	5.81255	-9.02811
0.2	7.3791	75.4312	7.30041	75.074	6.98355	73.5392	6.58246	71.34	5.76308	65.6241	3.7682	27.158	4.43437	-18.2605
0.25	5.59181	71.8018	5.5214	71.379	5.23623	69.5288	4.87093	66.7722	4.10794	58.9104	2.79643	10.6899	3.49621	-25.0971
0.3	4.35482	68.1781	4.28853	67.6655	4.01783	65.3625	3.66498	61.7287	2.90973	49.7331	2.20764	-1.31552	2.78432	-30.3755
0.35	3.43813	64.5585	3.37323	63.9199	3.10494	60.9404	2.74608	55.8023	2.00743	35.6491	1.77626	-10.0204	2.21659	-34.5871
0.4	2.72737	60.9396	2.66168	60.1198	2.38516	56.0682	2.00237	48.015	1.43759	19.3908	1.43025	-16.6096	1.75403	-38.0318
0.45	2.15944	57.3162	2.09092	56.2261	1.79451	50.3259	1.38693	36.1931	1.09585	7.15701	1.1427	-21.7941	1.37431	-40.903
0.5	1.69679	53.6802	1.6232	52.1689	1.29337	42.6881	0.957785	21.3315	0.851245	-1.63034	0.901019	-25.9986	1.06249	-43.3328
0.55	1.3157	50.0203	1.23427	47.8127	0.874314	31.22	0.698447	9.65144	0.658137	-8.28921	0.697925	-29.4903	0.807413	-45.4158
0.6	1.00048	46.3207	0.907464	42.868	0.588866	18.1639	0.517638	1.21798	0.50024	-13.5689	0.528329	-32.4467	0.600189	-47.2226
0.65	0.7403	42.5592	0.631102	36.6492	0.410503	8.17703	0.378744	-5.21118	0.370161	-17.8972	0.388221	-34.9915	0.433508	-48.8082
0.7	0.527437	38.704	0.403129	27.8473	0.284579	0.780264	0.2686	-10.3518	0.263717	-21.5381	0.274232	-37.2153	0.30129	-50.2172
0.75	0.356161	34.7087	0.242173	17.3723	0.189864	-4.9994	0.181221	-14.6091	0.178091	-24.6669	0.18345	-39.1881	0.198465	-51.4876
0.8	0.222154	30.5002	0.14132	8.68686	0.11804	-9.72203	0.113259	-18.2344	0.111151	-27.409	0.11334	-40.9671	0.120809	-52.6546
0.85	0.122019	25.9543	0.07544	1.98376	0.0650602	-13.721	0.0625259	-21.4011	0.0611724	-29.8634	0.0616967	-42.6058	0.0648064	-53.7558
0.9	0.053038	20.8261	0.0326703	-3.43791	0.028591	-17.2271	0.0274448	-24.2502	0.0267211	-32.1235	0.02662	-44.1659	0.0275425	-54.8422
0.95	0.0129856	14.4748	0.00817223	-8.13308	0.00716734	-20.4686	0.00684957	-26.9516	0.00661888	-34.325	0.00649287	-45.7594	0.00660328	-56.0201

Excentricidad y ángulo de equilibrio para un punto de inyección en $\gamma = \pi/6$ y a=0.

Tabla 14. Ángulo de equilibrio y números de Sommerfeld para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = \pi/6$, (L/D) = (1/4), .05 $\leq \epsilon$ pres \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 .

Hay que recordar que en la práctica el dato de entrada es el número de Sommerfeld, el cual se puede obtener fácilmente a partir de las características físicas del sistema rotor chumacera (ver ecuación 10.2), por lo que es conveniente interpolar las tablas 14, 16, 18 y 20 respectivamente.

Tabla 15. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = \pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100, fprt \approx 0. Datos obtenidos a partir de la interpolada a partir de los datos de la tabla 14.

							<i>γ</i> = π/6							
S	fprt≈	≈0	fprt	=1	fprt	=5	fprt	=10	fprt	=20	fprt	=50	fprt=	100
	ε _{pres}	ϕ_{pres}	ε _{pres}	ϕ_{pres}	ε _{pres}	ϕ_{pres}	ε _{pres}	φ _{pres}	ϵ_{pres}	φ _{pres}	ϵ_{pres}	ϕ_{pres}	ε _{pres}	ϕ_{pres}
0.004	0.964195	12.56	0.960656	-9.09523	0.959196	-21.053	0.958594	-27.4102	0.958088	-34.6795	0.957698	-46.0069	0.957747	-56.207
0.008	0.957726	13.4371	0.950426	-8.17177	0.947667	-20.3199	0.946657	-26.7729	0.945894	-34.1449	0.945522	-45.6156	0.945996	-55.9239
0.01	0.954583	13.8607	0.945545	-7.72785	0.942203	-19.9709	0.941013	-26.4707	0.940139	-33.8923	0.939777	-45.4315	0.940442	-55.7909
0.013	0.949978	14.4777	0.938507	-7.0835	0.934369	-19.4686	0.932936	-26.0371	0.931915	-33.5311	0.931573	-45.1691	0.932498	-55.6016
0.02	0.939739	15.8341	0.92334	-5.67584	0.917686	-18.3896	0.915807	-25.1123	0.914526	-32.7656	0.914245	-44.617	0.915673	-55.205
0.05	0.903118	20.4545	0.875299	-0.91754	0.866762	-14.9516	0.864242	-22.2426	0.862749	-30.4528	0.862977	-43.0078	0.865553	-54.0786
0.1	0.862487	24.8575	0.83224	4.33946	0.818827	-11.2312	0.814885	-19.1829	0.812986	-28.0571	0.815101	-41.4843	0.821167	-53.1583
0.2	0.812968	29.0602	0.770233	13.7714	0.744095	-4.37239	0.738089	-13.664	0.735942	-23.8339	0.739824	-38.8052	0.749134	-51.4666
0.3	0.770637	32.9203	0.730336	21.5763	0.693134	1.69212	0.684459	-8.86836	0.681668	-20.274	0.687626	-36.6922	0.700544	-50.2318
0.4	0.735942	35.8544	0.700963	27.6781	0.653815	7.55688	0.641494	-4.22545	0.637581	-16.8972	0.645365	-34.7709	0.661479	-49.147
0.5	0.707209	38.1412	0.67893	32.3695	0.622759	13.2543	0.605676	0.401791	0.600083	-13.5768	0.609296	-32.9494	0.628585	-48.1546
0.6	0.681668	40.1339	0.657497	35.8101	0.597511	18.7535	0.575593	5.03953	0.567242	-10.2431	0.577666	-31.1857	0.60005	-47.2243
0.7	0.65865	41.902	0.636599	38.5554	0.577633	23.7996	0.549633	9.72344	0.538204	-6.86519	0.54944	-29.4545	0.574503	-46.3338
0.8	0.637579	43.5024	0.618319	40.8586	0.561085	28.3033	0.527925	14.3208	0.512219	-3.42021	0.523717	-27.7338	0.551607	-45.4781
0.9	0.618103	44.9693	0.601233	42.7405	0.546659	32.2006	0.509469	18.808	0.48892	0.100107	0.500229	-26.0161	0.530582	-44.6449
0.1	0.600083	46.3145	0.584937	44.4788	0.534613	35.6894	0.493722	23.1053	0.467976	3.68861	0.478426	-24.2874	0.511288	-43.832
1.2	0.567216	48.7531	0.554849	47.378	0.511834	41.0095	0.468838	30.7036	0.432592	10.9296	0.439286	-20.7786	0.476656	-42.2487

1.4	0.538058	50.8979	0.527568	49.8329	0.488576	44.7487	0.448878	36.5595	0.404572	18.0758	0.404846	-17.1661	0.446276	-40.7062
1.6	0.511786	52.8208	0.502737	51.943	0.468352	47.9146	0.433048	41.5368	0.382504	24.7759	0.374206	-13.4231	0.419059	-39.1881
1.8	0.48793	54.56	0.479936	53.8305	0.449493	50.393	0.417779	45.3428	0.364966	30.6853	0.346909	-9.5522	0.394544	-37.6875
2	0.466093	56.1483	0.458976	55.517	0.431578	52.6373	0.400233	47.9905	0.350497	35.4958	0.322482	-5.54909	0.372123	-36.1954
2.4	0.427469	58.9504	0.421603	58.4563	0.398855	56.1892	0.372008	52.8178	0.328341	43.6188	0.281572	2.63461	0.332621	-33.2252
2.5	0.418712	59.5848	0.413102	59.114	0.391275	56.9784	0.365437	53.773	0.323271	45.2045	0.272835	4.68537	0.323664	-32.4833
2.8	0.394305	61.352	0.389308	60.9402	0.369865	59.0999	0.346727	56.2453	0.306933	48.8364	0.249751	10.7605	0.298757	-30.259
3	0.379357	62.4341	0.374724	62.0522	0.356633	60.3379	0.334977	57.769	0.296156	50.6174	0.236727	14.6349	0.283499	-28.7732
3.5	0.346157	64.8367	0.342204	64.5076	0.326725	63.0544	0.308123	60.8777	0.276129	54.6107	0.210846	23.3248	0.249766	-25.0691
4	0.317697	66.8968	0.314282	66.6012	0.300856	65.2903	0.284537	63.2687	0.255094	58.0906	0.192241	30.4019	0.221344	-21.4001
5	0.272074	70.2011	0.269363	69.9392	0.258593	68.7974	0.245507	67.1836	0.221242	62.4329	0.167313	41.0015	0.176769	-14.3143
7	0.209284	74.757	0.207348	74.529	0.199623	73.5687	0.190613	72.1361	0.173103	68.3084	0.136325	49.7904	0.122506	-2.1976
8	0.18708	76.3703	0.185485	76.1426	0.179138	75.1597	0.171236	73.7491	0.155541	70.3191	0.127692	52.1717	0.105578	2.49141
10	0.15384	78.7877	0.152424	78.5785	0.147233	77.6609	0.141356	76.3187	0.129923	72.8901	0.0981883	57.7877	0.0874063	9.83294
15	0.107325	82.1758	0.106269	81.9716	0.101795	81.1461	0.0978064	79.895	0.0922445	76.5979	0.0899019	52.2955		
30	0.0666191	85.147	0.0652386	84.9815	0.0588957	84.3704	0.0488579	83.8148	0.0201217	84.6546				

Para observar mejor la variación de la posición del rotor según la intensidad de presurización se graficaron las posiciones de la tabla 14 en la figura 41 la tendencia de la figura 39 es la misma para la tabla 15.

Figura 41. Posiciones gráficas del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (spres) e intensidades de presurización (fprt), cuando $\gamma = \pi/6$, (L/D) = (1/4), .05 \leq spres \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt \approx 0, (gráfica para la tabla 14 y 15).

							γ=11π/	6						
Epres	fprt	≈0	fprt	=1	fprt	=5	fprt=	=10	fprt=	=20	fprt=	=50	fprt=	100
	Spres	φpres	Spres	φpres	Spres	φpres	Spres	φpres	Spres	φpres	Spres	φpres	Spres	φpres
0.05	32.2363	86.3528	32.032	86.5636	31.2229	87.4319	30.2269	88.5768	28.2913	91.0831	23.0522	100.715	17.1627	126.258
0.1	15.8395	82.7078	15.7442	82.9086	15.3661	83.7326	14.9024	84.8111	14.0067	87.1402	11.6164	95.6907	8.86124	116.058
0.15	10.2553	79.0668	10.1953	79.2615	9.95835	80.0582	9.66876	81.0947	9.11297	83.3079	7.65196	91.1423	5.96834	108.287
0.2	7.37921	75.4312	7.33649	75.6235	7.16846	76.4081	6.96399	77.4234	6.57426	79.5708	5.5668	86.9433	4.4209	102.002
0.25	5.59181	71.8018	5.55934	71.9952	5.43165	72.7821	5.277	73.7956	4.98455	75.9208	4.24298	83.0214	3.4177	96.6935
0.3	4.35482	68.1781	4.32893	68.3761	4.22742	69.1801	4.10518	70.2109	3.87616	72.3546	3.30849	79.3354	2.69489	92.0767
0.35	3.43813	64.5585	3.41681	64.7651	3.33352	65.602	3.23392	66.6703	3.04942	68.8729	2.60441	75.863	2.14053	87.986
0.4	2.72737	60.9396	2.70938	61.1595	2.63945	62.0478	2.55653	63.1759	2.40512	65.4804	2.05175	72.5948	1.69905	84.3205
0.45	2.15944	57.3162	2.14398	57.5551	2.08424	58.5172	2.0142	59.7316	1.88859	62.1855	1.60697	69.5302	1.33974	81.0156
0.5	1.69679	53.6802	1.6833	53.9456	1.63164	55.0101	1.57197	56.3437	1.4674	59.0015	1.24412	66.6745	1.04408	78.0285
0.55	1.3157	50.0203	1.30381	50.3225	1.25878	51.5277	1.20782	53.0218	1.12117	55.9472	0.946735	64.0365	0.800088	75.3282
0.6	1.00048	46.3207	0.989917	46.6742	0.950574	48.0731	0.907258	49.7821	0.836499	53.0485	0.703701	61.6263	0.59941	72.89
0.65	0.740298	42.5592	0.730887	42.986	0.696645	44.6546	0.660395	46.6493	0.6042	50.3389	0.507005	59.4515	0.435843	70.6918
0.7	0.527428	38.7041	0.519056	39.2391	0.489664	41.2898	0.460255	43.662	0.417662	47.858	0.350434	57.5146	0.304489	68.7113
0.75	0.356159	34.7088	0.348785	35.4107	0.324314	38.0139	0.301757	40.876	0.271772	45.6477	0.228821	55.8095	0.201287	66.9241
0.8	0.222152	30.5004	0.215817	31.4764	0.196654	34.8911	0.180968	38.3645	0.162139	43.7414	0.137616	54.3188	0.122759	65.3021
0.85	0.121995	25.9607	0.11688	27.4196	0.103614	32.0271	0.0944225	36.205	0.0845357	42.1494	0.0726992	53.0105	0.0658683	63.8096
0.9	0.0530122	20.8423	0.0494371	23.2663	0.0423844	29.5581	0.0384428	34.4428	0.0346115	40.8392	0.0303194	51.8302	0.0279531	62.3936
0.95	0.0129711	14.5119	0.0114078	19.1662	0.00950601	27.555	0.00866391	33.014	0.00790513	39.6942	0.00709687	50.6641	0.00667818	60.9437

Excentricidad y ángulo de equilibrio para un punto de inyección en γ = 11 π /6 y a=0.

Tabla 16. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 11\pi/6$, (L/D) = (1/4), .05 \leq epres \geq .95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt \approx 0.

							$\gamma = 11\pi/6$							
S	fprt	≈0	fprt	=1	fprt=	=5	fprt=	=10	fprt=	=20	fprt=	=50	fprt=	100
	3	φ	3	φ	3	φ	3	φ	3	φ	3	φ	3	φ
0.004	0.964195	12.56	0.962316	18.1615	0.960593	27.1556	0.959889	32.747	0.959204	39.4901	0.95835	50.4693	0.957849	60.714
0.008	0.957726	13.4371	0.95555	18.7132	0.952828	27.4478	0.95137	32.9768	0.949783	39.699	0.947646	50.719	0.946266	61.0528
0.01	0.954583	13.8607	0.952269	18.9809	0.949084	27.5899	0.947279	33.0881	0.945279	39.7995	0.942562	50.8376	0.940787	61.2127
0.013	0.949978	14.4777	0.947473	19.3726	0.943636	27.7982	0.941346	33.2509	0.938773	39.9453	0.935258	51.008	0.932945	61.4411
0.02	0.939739	15.8341	0.936846	20.2411	0.931688	28.2622	0.928423	33.6114	0.924715	40.2638	0.919651	51.3719	0.91631	61.9236
0.05	0.903118	20.4545	0.899407	23.3152	0.891227	29.9407	0.885829	34.8873	0.879791	41.3334	0.871771	52.4911	0.866499	63.3464
0.1	0.862487	24.8575	0.859361	26.6378	0.851964	31.9111	0.8469	36.3412	0.840832	42.4397	0.831093	53.4868	0.822563	64.6017
0.2	0.812968	29.0602	0.81002	30.6858	0.798578	34.9801	0.791697	38.7791	0.782377	44.4078	0.766005	55.3277	0.750861	66.8958
0.3	0.770637	32.9203	0.768216	33.9823	0.759876	37.433	0.750794	40.8395	0.739079	46.1011	0.720056	56.8184	0.701903	68.6395
0.4	0.735942	35.8544	0.733568	36.6814	0.725436	39.6036	0.717379	42.6599	0.705315	47.6064	0.6827	58.155	0.66245	70.1772
0.5	0.707209	38.1412	0.705005	38.8609	0.697209	41.4752	0.689065	44.2974	0.676344	48.9951	0.651978	59.3697	0.629016	71.5844
0.6	0.681668	40.1339	0.679544	40.7821	0.671916	43.1689	0.663865	45.8003	0.650998	50.2866	0.624882	60.511	0.599836	72.8976
0.7	0.65865	41.902	0.65663	42.4938	0.649266	44.7044	0.641215	47.189	0.627991	51.5019	0.60084	61.5876	0.573619	74.143
0.8	0.637579	43.5024	0.635613	44.0533	0.628362	46.1275	0.62041	48.4856	0.607147	52.6466	0.578859	62.6142	0.55002	75.3272
0.9	0.618103	44.9693	0.616207	45.4849	0.609155	47.4433	0.601327	49.6971	0.587901	53.7319	0.558803	63.5936	0.528287	76.4652
0.1	0.600083	46.3145	0.59823	46.804	0.591277	48.6731	0.583459	50.8419	0.570011	54.7637	0.540241	64.5324	0.508314	77.559
1.2	0.567216	48.7531	0.565458	49.1986	0.558792	50.9176	0.55118	52.9441	0.537689	56.6843	0.506786	66.3022	0.472386	79.6388
1.4	0.538058	50.8979	0.536361	51.3132	0.529876	52.9258	0.522369	54.8473	0.508964	58.4423	0.47723	67.9462	0.440869	81.5932
1.6	0.511786	52.8208	0.510153	53.2117	0.503875	54.7392	0.496512	56.5779	0.483122	60.0613	0.450868	69.4787	0.412779	83.4416
1.8	0.48793	54.56	0.486339	54.9331	0.480188	56.3966	0.47294	58.1688	0.459688	61.5583	0.42696	70.9145	0.387562	85.1949
2	0.466093	56.1483	0.464548	56.506	0.458557	57.9151	0.451454	59.6321	0.438265	62.9484	0.405285	72.2603	0.364737	86.8626

Tabla 17. Excentricidad y ángulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 11\pi/6$, (L/D) = (1/4), fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 . Datos obtenidos a partir de la interpolada a partir de los datos de la tabla 16.

2.4	0.427469	58.9504	0.425992	59.2862	0.420231	60.6162	0.413336	62.2515	0.400445	65.4506	0.367143	74.7173	0.325035	89.9669
2.5	0.418712	59.5848	0.417254	59.9161	0.411556	61.2295	0.404724	62.848	0.391853	66.0261	0.358577	75.2865	0.316174	90.6986
2.8	0.394305	61.352	0.392885	61.6724	0.387321	62.9466	0.380614	64.5244	0.367948	67.6431	0.334733	76.8992	0.291827	92.7947
3	0.379357	62.4341	0.377967	62.748	0.372512	63.9985	0.365921	65.5518	0.353429	68.6369	0.320271	77.8999	0.277224	94.1149
3.5	0.346157	64.8367	0.344825	65.1385	0.339582	66.3454	0.333212	67.8534	0.321043	70.8773	0.288512	80.1662	0.24519	97.1733
4	0.317697	66.8968	0.316428	67.1889	0.311425	68.3601	0.305327	69.8312	0.293611	72.8066	0.261718	82.1451	0.21897	99.9105
5	0.272074	70.2011	0.270908	70.4808	0.266282	71.6076	0.260581	73.0355	0.249413	75.9632	0.219329	85.4095	0.178608	104.583
7	0.209284	74.757	0.208265	75.0235	0.204191	76.1041	0.19915	77.4855	0.18982	80.3279	0.163587	89.9967	0.128844	111.496
8	0.18708	76.3703	0.186178	76.6287	0.182596	77.6779	0.178166	79.0257	0.169424	81.8566	0.144145	91.6658	0.112976	114.088
10	0.15384	78.7877	0.152954	79.0468	0.149464	80.0976	0.145733	81.4116	0.138527	84.1877	0.118199	94.0715	0.0910747	118.056
15	0.107325	82.1758	0.106564	82.4317	0.103385	83.4865	0.0995058	84.8486	0.0952097	87.5263	0.0860155	97.3162	0.0720535	123.64
30	0.0666191	85.147	0.0654642	85.4423	0.0602366	86.6911	0.0521447	88.4219	0.0292788	92.5736				

Para observar mejor la variación de la posición del rotor según la intensidad de presurización se graficaron las posiciones de la tabla 16 en la figura 42 la tendencia de la figura 42 es la misma para la tabla 17.

Figura 42. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (ϵ_{pres}) e intensidades de presurización (fprt), cuando $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\epsilon_{pres} \ge$.95 en lapsos de 0.05 y fprt = 1, 5, 10, 20, 50, 100, $fprt \approx 0$, (gráfica para la tabla 16 y 17).

							γ= 5 π /6							
ε _{pres}	fpr	t≈0	fpr	t=1	fpr	t=5	fprt	t=10	fprt	=20	fpr	t=50	fprt	=100
	Spres	φ _{pres}	Spres	φpres	Spres	φ _{pres}	Spres	φ _{pres}	Spres	φpres	Spres	φ _{pres}	Spres	φ _{pres}
0.05	32.2363	86.3528	32.4693	86.1153	33.4058	85.2008	34.5822	84.1326	36.9513	82.2141	44.1507	77.7644	56.3247	72.981
0.1	15.8395	82.7078	15.9603	82.4581	16.4427	81.5019	17.0456	80.3938	18.2508	78.4259	21.86	73.9492	27.8566	69.2252
0.15	10.2553	79.0668	10.3359	78.8091	10.6573	77.8267	11.0567	76.6969	11.8487	74.7096	14.1855	70.2574	18.0024	65.6155
0.2	7.37921	75.4312	7.43784	75.1703	7.67116	74.1796	7.95947	73.0471	8.52677	71.0704	10.1765	66.6884	12.8289	62.1454
0.25	5.59181	71.8018	5.636	71.5428	5.81092	70.5621	6.0259	69.4461	6.44584	67.5078	7.65121	63.2352	9.5615	58.8042
0.3	4.35482	68.1781	4.3883	67.926	4.52048	66.973	4.68217	65.8911	4.99603	64.016	5.88692	59.8858	7.28122	55.5783
0.35	3.43813	64.5585	3.46336	64.3178	3.56273	63.4082	3.68385	62.3755	3.9178	60.5847	4.57598	56.6243	5.59529	52.4511
0.4	2.72737	60.9396	2.74613	60.714	2.81987	59.8604	2.90954	58.8893	3.08218	57.1995	3.56469	53.4316	4.30575	49.4039
0.45	2.15944	57.3162	2.17312	57.1083	2.22685	56.3198	2.29212	55.4192	2.41756	53.843	2.76677	50.2861	3.29981	46.4155
0.5	1.69679	53.6802	1.70653	53.4916	1.74481	52.7739	1.79131	51.9495	1.88067	50.4953	2.12903	47.1639	2.50671	43.4626
0.55	1.3157	50.0203	1.32245	49.8516	1.34901	49.2069	1.3813	48.4614	1.44342	47.134	1.61621	44.0389	1.87858	40.519
0.6	1.00048	46.3207	1.00501	46.1717	1.02286	45.5995	1.04461	44.9329	1.08653	43.7335	1.20348	40.8817	1.38119	37.5549
0.65	0.740298	42.5592	0.743227	42.4289	0.754778	41.9266	0.768887	41.3366	0.796172	40.2636	0.872614	37.6582	0.989114	34.5355
0.7	0.527428	38.7041	0.529233	38.5913	0.536363	38.1545	0.545097	37.6375	0.562047	36.6866	0.609812	34.3273	0.682963	31.4181
0.75	0.356159	34.7088	0.357205	34.612	0.361341	34.2355	0.366421	33.7866	0.376321	32.9518	0.404407	30.8348	0.447705	28.147
0.8	0.222152	30.5004	0.222708	30.4179	0.224906	30.0963	0.227613	29.71	0.232909	28.9841	0.248049	27.103	0.271578	24.6426
0.85	0.121995	25.9607	0.122275	25.885	0.123294	25.6127	0.124553	25.2835	0.127026	24.6588	0.13415	23.0053	0.145327	20.7768
0.9	0.0530122	20.8423	0.053131	20.7683	0.0535006	20.5405	0.0539586	20.2634	0.0548617	19.7325	0.0574849	18.2985	0.0616433	16.3064
0.95	0.0129711	14.5119	0.0130042	14.4275	0.0130783	14.2407	0.0131703	14.012	0.0133524	13.5701	0.013886	12.352	0.0147421	10.6059

Excentricidad y ángulo de equilibrio para un punto de inyección en $\gamma = 5\pi/6$ y a=0.

Tabla 18. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{\text{pres}} \ge .95$ en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt ≈ 0 .

							$\gamma = 5\pi/6$							
	fpr	t≈0	fpr	t=1	fpr	t=5	fprt	=10	fprt	=20	fprt	:=50	fprt	=10 0
S	3	φ	3	φ	3	φ	3	φ	3	φ	3	φ	3	φ
0.004	0.964195	12.56	0.964199	12.5151	0.964216	12.3379	0.964236	12.1204	0.964276	11.6991	0.964392	10.5298	0.964569	8.83651
0.008	0.957726	13.4371	0.957742	13.3894	0.957802	13.2009	0.957876	12.97	0.95802	12.5236	0.958418	11.2906	0.958994	9.5179
0.01	0.954583	13.8607	0.954603	13.8116	0.954685	13.6178	0.954784	13.3805	0.954977	12.9221	0.955508	11.659	0.956273	9.84848
0.013	0.949978	14.4777	0.950006	14.4267	0.950117	14.2251	0.950253	13.9787	0.950516	13.5032	0.951239	12.1966	0.952276	10.3319
0.02	0.939739	15.8341	0.939783	15.7789	0.939957	15.5609	0.94017	15.2949	0.940581	14.7828	0.941711	13.3836	0.943328	11.4033
0.05	0.903118	20.4545	0.903209	20.3865	0.903567	20.1188	0.904005	19.7934	0.90485	19.1709	0.907181	17.4938	0.910539	15.1683
0.1	0.862487	24.8575	0.862609	24.7801	0.86309	24.4758	0.863676	24.1079	0.864805	23.409	0.867899	21.5523	0.872361	19.024
0.2	0.812968	29.0602	0.813234	28.9534	0.814266	28.5385	0.81549	28.0455	0.817743	27.134	0.823319	24.8524	0.830134	22.0051
0.3	0.770637	32.9203	0.770939	32.8042	0.772115	32.354	0.773516	31.8197	0.77612	30.8325	0.782752	28.3563	0.791364	25.234
0.4	0.735942	35.8544	0.736319	35.7231	0.737789	35.2139	0.739545	34.6114	0.742823	33.503	0.751462	30.7142	0.76365	27.1195
0.5	0.707209	38.1412	0.707652	37.9963	0.709382	37.4362	0.711437	36.7771	0.715248	35.5734	0.724928	32.6181	0.738029	28.9286
0.6	0.681668	40.1339	0.682189	39.9747	0.684214	39.3616	0.686612	38.6432	0.691034	37.34	0.702089	34.1864	0.716965	30.2873
0.7	0.65865	41.902	0.659237	41.7304	0.661509	41.0712	0.664189	40.3022	0.669105	38.9157	0.681348	35.5895	0.696823	31.621
0.8	0.637579	43.5024	0.63824	43.3177	0.640789	42.6107	0.643788	41.789	0.649263	40.3155	0.662573	36.8361	0.679205	32.7343
0.9	0.618103	44.9693	0.618826	44.7733	0.621609	44.024	0.624873	43.1566	0.630811	41.6079	0.645375	37.961	0.663167	33.7299
0.1	0.600083	46.3145	0.600866	46.1076	0.603875	45.3182	0.607393	44.4073	0.613766	42.7885	0.629298	39.0059	0.648422	34.6323
1.2	0.567216	48.7531	0.56812	48.5249	0.571589	47.657	0.575628	46.661	0.58291	44.9034	0.600468	40.852	0.621493	36.269
1.4	0.538058	50.8979	0.539074	50.6503	0.542966	49.7111	0.547483	48.6379	0.555538	46.7604	0.574743	42.4844	0.597865	37.6826
1.6	0.511786	52.8208	0.512895	52.5563	0.517138	51.5554	0.522052	50.4156	0.53085	48.4255	0.55176	43.9288	0.576442	38.9579
1.8	0.48793	54.56	0.489133	54.2796	0.493724	53.22	0.499037	52.0165	0.508456	49.9291	0.530742	45.2458	0.557107	40.1006
2	0.466093	56.1483	0.467368	55.8543	0.472237	54.745	0.477868	53.4871	0.487918	51.3051	0.511541	46.4447	0.539329	41.1486

Tabla 19. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 5\pi/6$, (L/D) = (1/4), *fprt* =1, 5, 10, 20, 50, 100, fprt ≈ 0 . Datos obtenidos a partir de la interpolada a partir de la interpolada a partir de los datos de la tabla 18.

2.4	0.427469	58.9504	0.428871	58.6331	0.434228	57.4369	0.440426	56.0833	0.451473	53.7444	0.477331	48.5789	0.507665	43.0121
2.5	0.418712	59.5848	0.420138	59.2628	0.425585	58.0489	0.431892	56.6754	0.443151	54.302	0.469526	49.0662	0.500473	43.4348
2.8	0.394305	61.352	0.3958	61.0168	0.401505	59.7538	0.408083	58.3279	0.419847	55.8653	0.447665	50.4324	0.480038	44.6395
3	0.379357	62.4341	0.380881	62.0921	0.386717	60.8019	0.393496	59.3417	0.405591	56.8233	0.434113	51.2822	0.467468	45.3817
3.5	0.346157	64.8367	0.347735	64.4811	0.35377	63.1403	0.36079	61.6212	0.373445	58.9929	0.403631	53.202	0.438991	47.0697
4	0.317697	66.8968	0.319284	66.5337	0.325411	65.1587	0.332605	63.5946	0.345664	60.8802	0.376887	54.9003	0.413884	48.5692
5	0.272074	70.2011	0.273624	69.8325	0.279633	68.4318	0.28675	66.8292	0.29984	64.027	0.332219	57.7748	0.371413	51.1373
7	0.209284	74.757	0.210676	74.3952	0.216103	73.0127	0.222604	71.4152	0.234818	68.5834	0.266867	62.0964	0.307356	55.112
8	0.18708	76.3703	0.188312	76.0204	0.193189	74.6754	0.199165	73.1078	0.21116	70.2719	0.241925	63.7867	0.282624	56.689
10	0.15384	78.7877	0.155015	78.4445	0.159556	77.1308	0.164955	75.6063	0.175139	72.8777	0.203033	66.4777	0.24216	59.3215
15	0.107325	82.1758	0.108249	81.8587	0.111724	80.648	0.11569	79.2468	0.122909	76.738	0.143005	70.7728	0.176403	63.7775
30	0.0666191	85.147	0.0678113	84.8241	0.0718459	83.6225	0.0755566	82.2924	0.0800434	80.0584	0.0850127	75.2102	0.0947577	69.633

Para observar mejor la variación de la posición del rotor según la intensidad de presurización se graficaron las posiciones de la tabla 18 en la figura 43 la tendencia de la figura 43 es la misma para la tabla 19.

Figura 43. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (ϵ_{pres}) e intensidades de presurización (fprt), cuando $\gamma = 5\pi/6$, (L/D) = (1/4), .05 $\leq \epsilon_{pres} \geq$.95 en lapsos de 0.05 y fprt =1, 5, 10, 20, 50, 100, fprt \approx 0, (gráfica para la tabla 18 y 19).

							$\gamma = 7\pi$ /6							
Epres	fpri	t≈0	fpr	t=1	fpri	t=5	fprt	=10	fprt	=20	fprt	=50	fprt=	= 10 0
	S _{pres}	ϕ_{pres}	S _{pres}	ϕ_{pres}	S _{pres}	ϕ_{pres}	S _{pres}	ϕ_{pres}	S _{pres}	ϕ_{pres}	S _{pres}	φ _{pres}	S _{pres}	φ _{pres}
0.05	32.2363	86.3528	32.4371	86.5578	33.2478	87.3546	34.2734	88.3007	36.3621	90.0406	42.8689	94.2678	54.2483	99.0685
0.1	15.8395	82.7078	15.9296	82.8944	16.2925	83.623	16.7525	84.4945	17.6924	86.1153	20.6454	90.1501	25.8832	94.8904
0.15	10.2553	79.0668	10.3078	79.235	10.5195	79.894	10.7881	80.6873	11.3378	82.1778	13.0744	85.9759	16.1889	90.6009
0.2	7.37921	75.4312	7.41283	75.5816	7.54889	76.1725	7.72154	76.8877	8.07501	78.2433	9.19441	81.7729	11.2165	86.2268
0.25	5.59181	71.8018	5.61451	71.9354	5.70603	72.4618	5.8221	73.1018	6.05956	74.324	6.81136	77.567	8.1739	81.7998
0.3	4.35482	68.1781	4.37045	68.2963	4.43346	68.7632	4.51328	69.3329	4.67635	70.4277	5.19141	73.3798	6.12449	77.3525
0.35	3.43813	64.5585	3.44903	64.6629	3.4929	65.0759	3.54842	65.5814	3.66161	66.5577	4.01775	69.2262	4.66069	72.9142
0.4	2.72737	60.9396	2.735	61.0318	2.76568	61.3968	2.80445	61.8447	2.88333	62.7133	3.13034	65.1139	3.57369	68.5074
0.45	2.15944	57.3162	2.16478	57.3976	2.18622	57.7204	2.21326	58.1173	2.26817	58.8896	2.43925	61.0434	2.74411	64.1456
0.5	1.69679	53.6802	1.7005	53.7523	1.7154	54.0384	1.73417	54.3906	1.77219	55.0778	1.89004	57.0085	2.0984	59.8326
0.55	1.3157	50.0203	1.31825	50.0844	1.3285	50.3386	1.3414	50.6521	1.36747	51.265	1.44789	52.9971	1.58892	55.5625
0.6	1.00048	46.3207	1.00221	46.3778	1.00915	46.6047	1.01788	46.8847	1.03549	47.4331	1.08956	48.9905	1.18365	51.3203
0.65	0.740298	42.5592	0.741446	42.6103	0.746048	42.8138	0.751826	43.0651	0.763466	43.558	0.799047	44.9629	0.860499	47.0817
0.7	0.527428	38.7041	0.528166	38.7502	0.53112	38.9336	0.534825	39.1604	0.542278	39.6057	0.564971	40.8789	0.603894	42.8111
0.75	0.356159	34.7088	0.356613	34.7505	0.358422	34.9171	0.36069	35.1231	0.365245	35.528	0.379066	36.6882	0.40262	38.4577
0.8	0.222152	30.5004	0.222412	30.5385	0.223444	30.6909	0.224737	30.8796	0.22733	31.2505	0.235173	32.315	0.248457	33.9445
0.85	0.121995	25.9607	0.12215	25.9898	0.122673	26.1307	0.123329	26.3051	0.124642	26.6481	0.128601	27.6335	0.135269	29.145
0.9	0.0530122	20.8423	0.0530914	20.8593	0.0533045	20.9913	0.0535711	21.1547	0.0541045	21.476	0.0557079	22.3992	0.0583928	23.8159
0.95	0.0129711	14.5119	0.0129981	14.5066	0.0130481	14.6331	0.0131106	14.7896	0.0132354	15.0972	0.0136093	15.9796	0.0142314	17.3305

Excentricidad y ángulo de equilibrio para un punto de inyección en $\gamma = 7\pi/6$ y a=0.

Tabla 20. Ángulo de equilibrio y números de Sommerfeld de una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 7\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de 0.05 y *fprt* =1, 5, 10, 20, 50, 100, *fprt* \approx 0.

	$\gamma = 7\pi/6$														
S	<i>fprt</i> ≈0		t≈0 fprt=1		fpr	fprt=5		fprt=10		fprt=20		fprt=50		<i>fprt=10</i> 0	
	З	φ	З	φ	З	φ	З	φ	З	φ	З	φ	З	φ	
0.004	0.964195	12.56	0.964201	12.5907	0.964224	12.713	0.964252	12.8641	0.964306	13.1612	0.964463	14.013	0.964699	15.3158	
0.008	0.957726	13.4371	0.957738	13.4672	0.957786	13.5866	0.957844	13.7344	0.957959	14.0247	0.958289	14.8569	0.958797	16.1291	
0.01	0.954583	13.8607	0.954597	13.8904	0.954656	14.0086	0.954729	14.1548	0.954872	14.442	0.955285	15.2652	0.955922	16.5233	
0.013	0.949978	14.4777	0.949997	14.507	0.950072	14.6234	0.950166	14.7674	0.95035	15.0504	0.95088	15.861	0.951701	17.0993	
0.02	0.939739	15.8341	0.939766	15.8625	0.939877	15.9755	0.940013	16.1152	0.940282	16.3896	0.941061	17.1753	0.942273	18.3739	
0.05	0.903118	20.4545	0.903171	20.4813	0.903379	20.5879	0.903637	20.7196	0.904149	20.9779	0.90564	21.7148	0.907992	22.8302	
0.1	0.862487	24.8575	0.862552	24.8862	0.862811	25.0002	0.863134	25.1409	0.863773	25.4163	0.86565	26.1987	0.868646	27.3721	
0.2	0.812968	29.0602	0.813091	29.0851	0.81358	29.1846	0.814182	29.3082	0.815353	29.5529	0.818629	30.2666	0.823429	31.3878	
0.3	0.770637	32.9203	0.770771	32.9494	0.771301	33.0656	0.771957	33.2091	0.773245	33.49	0.776945	34.287	0.782627	35.479	
0.4	0.735942	35.8544	0.736102	35.8844	0.736743	36.0033	0.737537	36.1495	0.739106	36.4341	0.743655	37.2305	0.750876	38.3722	
0.5	0.707209	38.1412	0.707391	38.1724	0.708122	38.2954	0.709029	38.4466	0.710818	38.7404	0.715996	39.5583	0.72405	40.7374	
0.6	0.681668	40.1339	0.681877	40.1656	0.682715	40.2905	0.683753	40.4438	0.685801	40.7409	0.691713	41.5632	0.700846	42.7387	
0.7	0.65865	41.902	0.658881	41.9345	0.659806	42.0632	0.660952	42.2208	0.663209	42.5257	0.669713	43.365	0.67975	44.5503	
0.8	0.637579	43.5024	0.637836	43.5353	0.638862	43.6659	0.640132	43.8256	0.64263	44.1339	0.649816	44.9778	0.660689	46.175	
0.9	0.618103	44.9693	0.618382	45.0031	0.619492	45.1371	0.620865	45.3007	0.623566	45.6159	0.631321	46.4736	0.643201	47.6597	
0.1	0.600083	46.3145	0.600383	46.3493	0.601575	46.4865	0.60305	46.6539	0.605947	46.9758	0.614247	47.8479	0.626912	49.0421	
1.2	0.567216	48.7531	0.56756	48.7892	0.568925	48.9316	0.570614	49.1048	0.573926	49.4362	0.583388	50.3235	0.597736	51.5122	
1.4	0.538058	50.8979	0.538443	50.9355	0.539976	51.083	0.541869	51.2619	0.545577	51.6029	0.556077	52.5108	0.571824	53.7094	
1.6	0.511786	52.8208	0.512209	52.86	0.513887	53.0139	0.515958	53.2001	0.520013	53.5535	0.531521	54.4784	0.548775	55.6668	
1.8	0.48793	54.56	0.488392	54.6005	0.490223	54.7597	0.492481	54.9517	0.496896	55.3144	0.509315	56.2602	0.527788	57.4552	

Tabla 21. Excentricidad y Angulo de equilibrio a partir de un número de Sommerfeld, para una chumacera hidrodinámica presurizada tipo corta, cuando $\gamma = 7\pi/6$, (L/D) = (1/4), *fprt* =1, 5, 10, 20, 50, 100, *fprt*≈0. Datos obtenidos a partir de la interpolada a partir de los datos de la tabla 20.

2	0.466093	56.1483	0.466587	56.1905	0.468548	56.3562	0.470965	56.5557	0.475688	56.9309	0.489029	57.8915	0.508745	59.083
2.4	0.427469	58.9504	0.428027	58.9959	0.430238	59.1739	0.432962	59.3871	0.438278	59.7847	0.453209	60.7835	0.475052	61.9784
2.5	0.418712	59.5848	0.419284	59.6313	0.421548	59.8128	0.424337	60.03	0.429778	60.4342	0.445082	61.442	0.467428	62.6366
2.8	0.394305	61.352	0.394918	61.401	0.397348	61.5919	0.400336	61.8196	0.406123	62.2441	0.422355	63.2889	0.446178	64.4772
3	0.379357	62.4341	0.379992	62.485	0.38251	62.6833	0.38561	62.919	0.391652	63.3535	0.408517	64.4176	0.433086	65.6152
3.5	0.346157	64.8367	0.346844	64.8922	0.349566	65.1079	0.352892	65.365	0.359362	65.836	0.377487	66.9597	0.403921	68.1634
4	0.317697	66.8968	0.318417	66.9576	0.321272	67.1933	0.324788	67.4709	0.331647	67.9749	0.350874	69.1539	0.378586	70.3888
5	0.272074	70.2011	0.272838	70.2722	0.275866	70.547	0.27959	70.8695	0.286839	71.4513	0.307344	72.7685	0.33709	74.0593
7	0.209284	74.757	0.21007	74.8469	0.213183	75.1937	0.217005	75.5997	0.224434	76.3276	0.24527	77.9649	0.276759	79.4234
8	0.18708	76.3703	0.187813	76.4718	0.19073	76.8622	0.194348	77.3171	0.20161	78.1173	0.222889	79.8503	0.253778	81.4657
10	0.15384	78.7877	0.154604	78.8989	0.157603	79.329	0.161242	79.8347	0.168219	80.7473	0.187596	82.819	0.218111	84.6309
15	0.107325	82.1758	0.108021	82.3091	0.110696	82.8287	0.113821	83.4474	0.119537	84.5843	0.134712	87.2579	0.16072	89.6685
30	0.0666191	85.147	0.0676845	85.2688	0.0714428	85.7641	0.075154	86.3971	0.0801333	87.6801	0.0857142	91.2952	0.0916799	95.5644

Para observar mejor la variación de la posición del rotor según la intensidad de presurización se graficaron las posiciones de la tabla 18 en la figura 44 la tendencia de la figura 44 es la misma para la tabla 21.

Figura 44. Posiciones del centro de un rotor en una chumacera hidrodinámica corta a diferentes excentricidades (ε_{pres}) e intensidades de presurización (*fprt*), cuando $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de 0.05 y *fprt* =1, 5, 10, 20, 50, 100, fprt \approx 0, (gráfica para la tabla 20 y 21).

Al comparar las posiciones de equilibrio se observa que los mayores cambios se presentan en las posiciones de $\gamma = \pi/6$ y 11 $\pi/6$, los cuales presentan una reducción en la excentricidad y grandes cambios en la posición del rotor, esto se puede deber a que la intensidad de presurización actúa en sentido contrario al sentido de la fuerza del sistema.

10.4. Coeficientes rotodinámicos para una chumacera hidrodinámica presurizada con puertos de inyección para $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0.

Las siguientes tablas muestra los coeficientes rotodinámicos obtenidos a partir de la solución de las matrices de rigidez \overline{K}_{TOT} y amortiguamiento \overline{C}_{TOT} , o bien de la suma de los coeficientes obtenidos de la tabla (10) con los coeficientes de la tabla(11) para cada puerto y cada intensidad de presurización.

Coeficientes rotodinámicos para los puntos de inyección para $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0. Cuando fprt≈0, (caso clásico).

Tabla 22. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6, 11\pi/6, 5\pi/6, 7\pi/6, a=0, (L/D) = (1/4), .05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*≈0, debido a que *fprt*≈0 se podría considerar el caso clásico de una chumacera hidrodinámica.

(caso clásico) Cuando <i>fprt</i> \approx 0, $\gamma = \pi/6$, 11 $\pi/6$, 5 $\pi/6$, 7 $\pi/6$ y a=0.												
	<i>fprt</i> ≈0		Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Cvx	Cvv		
3	S	φ			Кух	куу	C//	Слу	Cyx			
0.05	32.2363	86.3528	1.28698	20.19053	-19.87852	2.54253	40.24327	2.54297	2.54297	39.89485		
0.1	15.8395	82.7078	1.32842	10.38112	-9.75769	2.53077	20.48716	2.53249	2.53249	19.79047		
0.15	10.2553	79.0668	1.39828	7.23855	-6.30477	2.51144	14.0657	2.51527	2.51527	13.02094		
0.2	7.37921	75.4312	1.49782	5.76309	-4.52028	2.48493	10.97979	2.49164	2.49164	9.58694		
0.25	5.59181	71.8018	1.62903	4.95525	-3.40459	2.45176	9.2306	2.46203	2.46203	7.48907		
0.3	4.35482	68.1781	1.79486	4.4825	-2.6246	2.41255	8.15305	2.42698	2.42698	6.06115		
0.35	3.43813	64.5585	1.99957	4.20323	-2.03745	2.36801	7.46354	2.38709	2.38709	5.01782		
0.4	2.72737	60.9396	2.2493	4.04778	-1.57148	2.31888	7.0221	2.34302	2.34302	4.21644		
0.45	2.15944	57.3162	2.55289	3.97901	-1.18647	2.26594	6.75327	2.29542	2.29542	3.57771		
0.5	1.69679	53.6802	2.92325	3.97664	-0.8577	2.20994	6.61476	2.24496	2.24496	3.05392		
0.55	1.3157	50.0203	3.37957	4.03051	-0.56862	2.15164	6.58373	2.19227	2.19227	2.61453		
0.6	1.00048	46.3207	3.95121	4.1377	-0.30707	2.09172	6.65066	2.13798	2.13798	2.23888		
0.65	0.740298	42.5592	4.68497	4.30189	-0.06297	2.03083	6.81739	2.08263	2.08263	1.91234		
0.7	0.527428	38.7041	5.65945	4.53473	0.17341	1.96954	7.09868	2.02674	2.02674	1.62396		
0.75	0.356159	34.7088	7.01685	4.86026	0.41349	1.90835	7.52848	1.97076	1.97076	1.36506		
0.8	0.222152	30.5004	9.04231	5.32636	0.67391	1.84771	8.17684	1.91507	1.91507	1.12807		
0.85	0.121995	25.9607	12.40202	6.03663	0.98517	1.78796	9.19758	1.86001	1.86001	0.90535		
0.9	0.053012	20.8423	19.09555	7.26367	1.42129	1.72942	10.99784	1.80586	1.80586	0.68692		
0.95	0.012971	14.5119	39.12256	10.09941	2.26685	1.67232	15.21263	1.75283	1.75283	0.45249		

Tabla 23. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$. a=0, (L/D) = (1/4), *fprt* ≈ 0 , debido a que *fprt* ≈ 0 se podría considerar el caso clásico de una chumacera hidrodinámica.

(caso clásico) Cuando <i>fprt</i> \approx 0, $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0.												
	<i>fprt</i> ≈0		Кхх	Kxy	Kvx	Kvv	Схх	Cxv	Сух	Cvv		
S	3	φ		,				,	,			
0.004	0.9642	12.56	54.98834	11.87845	2.756	1.6564	17.86946	1.738	1.738	0.37544		
0.008	0.95773	13.4371	46.43713	10.95536	2.50442	1.66364	16.49027	1.74475	1.74475	0.41162		
0.01	0.95458	13.8607	43.16141	10.58055	2.40097	1.66717	15.93063	1.74803	1.74803	0.42851		
0.013	0.94998	14.4777	39.10496	10.09726	2.26625	1.67235	15.20942	1.75285	1.75285	0.4526		
0.02	0.93974	15.8341	32.30598	9.23114	2.02	1.68391	13.91834	1.76361	1.76361	0.50394		
0.05	0.90312	20.4545	19.7409	7.37168	1.45642	1.72582	11.15744	1.80252	1.80252	0.6731		
0.1	0.86249	24.8575	13.61944	6.27646	1.07755	1.77322	9.54693	1.84639	1.84639	0.8509		
0.2	0.81297	29.0602	9.74244	5.48071	0.74795	1.83211	8.39626	1.90072	1.90072	1.06927		
0.3	0.77064	32.9203	7.74702	5.03154	0.51724	1.88323	7.7636	1.94772	1.94772	1.26501		
0.4	0.73594	35.8544	6.58401	4.75723	0.3448	1.92552	7.38953	1.98648	1.98648	1.43532		
0.5	0.70721	38.1412	5.82696	4.57516	0.20748	1.9607	7.15035	2.01867	2.01867	1.585		
0.6	0.68167	40.1339	5.26717	4.44022	0.08698	1.99203	6.98063	2.04727	2.04727	1.72584		
0.7	0.65865	41.902	4.83343	4.33678	-0.02181	2.02024	6.85721	2.07299	2.07299	1.85998		
0.8	0.63758	43.5024	4.48402	4.25531	-0.1225	2.04602	6.7661	2.09645	2.09645	1.98952		
0.9	0.6181	44.9693	4.19493	4.19015	-0.21718	2.06976	6.69904	2.11803	2.11803	2.11562		
1	0.60008	46.3145	3.95228	4.13792	-0.30665	2.09162	6.65085	2.13789	2.13789	2.2383		
1.2	0.56722	48.7531	3.56147	4.06136	-0.47599	2.13116	6.59586	2.17373	2.17373	2.47883		
1.4	0.53806	50.8979	3.26142	4.0128	-0.63475	2.16574	6.58207	2.20502	2.20502	2.71303		
1.6	0.51179	52.8208	3.02218	3.98449	-0.78649	2.19638	6.59831	2.23271	2.23271	2.94364		
1.8	0.48793	54.56	2.82684	3.97181	-0.9329	2.2237	6.63774	2.25736	2.25736	3.17168		
2	0.46609	56.1483	2.66404	3.97166	-1.07543	2.24821	6.69587	2.27946	2.27946	3.39831		
2.4	0.42747	58.9504	2.40871	4.00086	-1.35177	2.29022	6.8563	2.31726	2.31726	3.84896		
2.5	0.41871	59.5848	2.35603	4.01326	-1.41948	2.29947	6.90408	2.32558	2.32558	3.9614		
2.8	0.39431	61.352	2.21834	4.0606	-1.61989	2.32468	7.06262	2.34823	2.34823	4.29837		
3	0.37936	62.4341	2.14025	4.09983	-1.75222	2.33967	7.1801	2.36168	2.36168	4.524		
3.5	0.34616	64.8367	1.98233	4.21967	-2.07762	2.37161	7.50646	2.39032	2.39032	5.08811		
4	0.3177	66.8968	1.8626	4.36609	-2.39938	2.39736	7.87379	2.41338	2.41338	5.65717		
5	0.27207	70.2011	1.69776	4.71605	-3.02974	2.43516	8.69374	2.44719	2.44719	6.79783		
7	0.20928	74.757	1.51972	5.57687	-4.27682	2.47926	10.58246	2.48657	2.48657	9.12493		
8	0.18708	76.3703	1.46916	6.05892	-4.89584	2.49244	11.6062	2.49834	2.49834	10.30332		
10	0.15384	78.7877	1.40485	7.0868	-6.12925	2.50965	13.7518	2.51368	2.51368	12.68031		
15	0.10733	82.1758	1.33686	9.72654	-9.05758	2.52841	19.15797	2.53039	2.53039	18.41027		
30	0.06662	85.147	1.29766	15.26458	-14.84897	2.53948	30.34565	2.54025	2.54025	29.88145		

Figura 45. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$. a=0, (L/D) = (1/4), $fprt\approx0$, debido a que $fprt\approx0$ se podría considerar el caso clásico de una chumacera hidrodinámica, (gráfica para la tabla 22 y 23).

Figura 46. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$. a=0, (L/D) = (1/4), $fprt\approx0$, debido a que $fprt\approx0$ se podría considerar el caso clásico de una chumacera hidrodinámica, (gráfica para la tabla 22 y 23).

Coeficientes rotodinámicos para un punto de inyección para $\gamma = \pi/6$ y a=0.

	$\gamma = \pi/6 \text{ y } a = 0$													
	fprt=1		Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Cvx	Cvv				
3	s	φ		i kay	КуХ	куу	CAA	CAY	Cyx	Cyy				
0.05	31.9987	86.1074	1.30671	20.20204	-19.86702	2.54924	40.53871	2.52413	2.71523	39.88387				
0.1	15.7104	82.4352	1.35109	10.39435	-9.74446	2.53849	20.65014	2.51164	2.62763	19.77829				
0.15	10.1606	78.758	1.42502	7.25418	-6.28914	2.52058	14.1875	2.49175	2.58647	13.00718				
0.2	7.30041	75.074	1.53025	5.78208	-4.50128	2.49606	11.08393	2.46457	2.55263	9.57109				
0.25	5.5214	71.379	1.66955	4.97904	-3.3808	2.46573	9.32731	2.43024	2.51881	7.47041				
0.3	4.28853	67.6655	1.84711	4.51329	-2.59381	2.4307	8.24845	2.38878	2.4832	6.03864				
0.35	3.37323	63.9199	2.06934	4.24455	-1.99613	2.39248	7.5625	2.34002	2.44571	4.98993				
0.4	2.66168	60.1198	2.34611	4.10554	-1.51373	2.35334	7.12951	2.28333	2.4071	4.18083				
0.45	2.09092	56.2261	2.69327	4.06366	-1.10182	2.31698	6.87515	2.21722	2.36892	3.53055				
0.5	1.6232	52.1689	3.13745	4.10796	-0.72638	2.29045	6.7597	2.13841	2.33381	2.98861				
0.55	1.23427	47.8127	3.72691	4.24931	-0.34982	2.28947	6.76537	2.03997	2.30669	2.51859				
0.6	0.90746	42.868	4.55725	4.53811	0.09334	2.35627	6.89293	1.90663	2.29804	2.08603				
0.65	0.6311	36.6492	5.8286	5.13004	0.76518	2.63053	7.16449	1.70462	2.33398	1.6386				
0.7	0.40313	27.8473	7.8109	6.39553	2.03421	3.57896	7.60771	1.39146	2.467	1.0745				
0.75	0.24217	17.3723	10.0791	8.18302	3.73625	5.51378	8.14174	1.08539	2.63618	0.40438				
0.8	0.14132	8.68686	12.38771	9.57964	4.92718	7.25523	8.75981	0.9254	2.65624	-0.13018				
0.85	0.07544	1.98376	15.78077	10.68206	5.6306	8.17495	9.68974	0.84888	2.53669	-0.48485				
0.9	0.03267	-3.43791	22.47382	11.95882	6.11644	8.25475	11.37709	0.80884	2.33294	-0.69874				
0.95	0.00817	-8.13308	42.48788	14.50231	6.66976	7.43272	15.45831	0.8011	2.07427	-0.79268				

Tabla 24. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, a=0, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=1.

	$\gamma = \pi/6 \text{ y } a = 0.$													
	fprt=1		Кхх	Кху	Кух	Куу	Схх	Сху	Сух	Суу				
S	3	φ		,	,			,	,					
0.004	0.96066	-9.09523	59.25214	17.31404	8.19159	8.5858	18.13957	0.54847	2.08234	-1.14101				
0.008	0.95043	-8.17177	49.8166	15.37274	6.9218	7.43771	16.73573	0.78949	2.0656	-0.83703				
0.01	0.94555	-7.72785	46.42355	14.88712	6.70755	7.35256	16.1813	0.82086	2.07896	-0.79551				
0.013	0.93851	-7.0835	42.30619	14.37633	6.54532	7.39216	15.47422	0.83638	2.10681	-0.77244				
0.02	0.92334	-5.67584	35.54402	13.64951	6.43837	7.71286	14.22526	0.82391	2.18241	-0.7783				
0.05	0.8753	-0.91755	23.18613	12.17936	6.2641	8.43474	11.60407	0.77319	2.42578	-0.76328				
0.1	0.83224	4.33946	16.92887	10.71311	5.51419	7.72101	10.06047	0.86488	2.53485	-0.46492				
0.2	0.77023	13.7714	12.97007	9.22859	4.49582	6.18409	9.00415	0.96596	2.60659	-0.01616				
0.3	0.73034	21.5763	10.53099	7.78884	3.27454	4.61412	8.35129	1.14768	2.52978	0.47264				
0.4	0.70096	27.6781	8.75646	6.64242	2.22999	3.56143	7.9012	1.34618	2.4305	0.87968				
0.5	0.67893	32.3695	7.4918	5.87462	1.50694	2.97497	7.58216	1.51026	2.35571	1.18817				
0.6	0.6575	35.8101	6.5218	5.35773	1.00449	2.663	7.3453	1.6421	2.31394	1.42954				
0.7	0.6366	38.5554	5.79307	5.00922	0.65063	2.49143	7.17059	1.74362	2.29258	1.62919				
0.8	0.61832	40.8586	5.24332	4.76925	0.39144	2.39389	7.04041	1.82167	2.28212	1.80353				
0.9	0.60123	42.7405	4.81002	4.59709	0.18977	2.33899	6.94326	1.88406	2.27961	1.96083				
1	0.58494	44.4788	4.46052	4.4675	0.02292	2.30534	6.87136	1.9354	2.28088	2.107				
1.2	0.55485	47.378	3.92685	4.29221	-0.24514	2.27701	6.78209	2.01559	2.29139	2.37892				
1.4	0.52757	49.8329	3.53876	4.18498	-0.46257	2.27263	6.74507	2.07614	2.30622	2.63301				
1.6	0.50274	51.943	3.24176	4.11925	-0.65173	2.27908	6.74484	2.12421	2.32264	2.87705				
1.8	0.47994	53.8305	3.00644	4.08106	-0.82365	2.29015	6.77216	2.16373	2.33913	3.11473				
2	0.45898	55.517	2.81489	4.06283	-0.98426	2.30331	6.82117	2.19704	2.35518	3.3485				
2.4	0.4216	58.4563	2.52175	4.06856	-1.28407	2.33077	6.96914	2.25047	2.38484	3.80895				
2.5	0.4131	59.114	2.46227	4.07679	-1.35595	2.33746	7.01464	2.26173	2.39169	3.92322				
2.8	0.38931	60.9402	2.30829	4.11417	-1.56632	2.35658	7.16779	2.29164	2.41086	4.26467				
3	0.37472	62.0522	2.22188	4.14833	-1.70372	2.36849	7.2826	2.30893	2.42258	4.49266				
3.5	0.3422	64.5076	2.04887	4.25904	-2.03825	2.3949	7.60457	2.34482	2.44837	5.06119				
4	0.31428	66.6012	1.91915	4.39946	-2.36602	2.41705	7.96976	2.37293	2.47001	5.6333				
5	0.26936	69.9392	1.74225	4.74221	-3.00357	2.45054	8.78924	2.41318	2.50335	6.77783				
7	0.20735	74.529	1.55311	5.59644	-4.25725	2.49073	10.68486	2.45894	2.54658	9.10874				
8	0.18549	76.1426	1.49966	6.07678	-4.87798	2.50289	11.71384	2.47247	2.56135	10.28818				
10	0.15242	78.5785	1.43178	7.10254	-6.11351	2.51886	13.87215	2.49005	2.58404	12.66649				
15	0.10627	81.9716	1.35956	9.7398	-9.04432	2.53614	19.31068	2.50961	2.61955	18.39814				
30	0.06524	84.9815	1.31436	15.27433	-14.8392	2.54517	30.53525	2.52447	2.65086	29.87224				

Tabla 25. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

Figura 47. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=1, (gráfica para la tabla 24 y 25).

Figura 48. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=1, (gráfica para la tabla 24 y 25).
					$\gamma = \pi/6 \ y \ a$	=0				
	fpr	t=5	Kxx	Kau	Kuny	King	Cvar	Car	Curr	Curr
3	S	φ	NAX.	кху	кух	куу	CXX	Сху	Сух	Суу
0.05	31.0537	85.0853	1.3868	20.25115	-19.81791	2.57934	41.75278	2.44675	3.45959	39.83642
0.1	15.1939	81.2916	1.44362	10.45148	-9.68733	2.57375	21.32397	2.42541	3.04361	19.72506
0.15	9.78102	77.4493	1.53496	7.32269	-6.22063	2.56324	14.69504	2.3937	2.90271	12.9461
0.2	6.98355	73.5392	1.66484	5.86702	-4.41635	2.5496	11.52241	2.35061	2.82928	9.49919
0.25	5.23623	69.5288	1.83979	5.08834	-3.2715	2.53581	9.74031	2.29446	2.78391	7.38325
0.3	4.01783	65.3625	2.07045	4.66021	-2.44689	2.52715	8.66404	2.22237	2.75648	5.92921
0.35	3.10494	60.9404	2.37478	4.45268	-1.788	2.53386	8.00588	2.12909	2.74767	4.84628
0.4	2.38516	56.0682	2.78461	4.42082	-1.19845	2.57884	7.63111	2.0046	2.76742	3.9806
0.45	1.79451	50.3259	3.35885	4.58613	-0.57935	2.72327	7.48052	1.82882	2.84325	3.22622
0.5	1.29337	42.6881	4.19575	5.0825	0.24816	3.17099	7.54244	1.56301	3.05115	2.46128
0.55	0.87431	31.22	5.24335	6.15952	1.56039	4.58361	7.76672	1.20034	3.5436	1.48145
0.6	0.58887	18.1639	5.86062	7.21208	2.76731	7.04185	7.85103	0.9917	4.07073	0.39324
0.65	0.4105	8.17703	6.28213	7.63276	3.2679	8.97733	7.83363	0.9759	4.20199	-0.39575
0.7	0.28458	0.78026	6.99829	7.83581	3.47449	10.10881	7.92405	0.99665	4.06182	-0.91587
0.75	0.18986	-4.9994	8.21239	8.09362	3.64685	10.65301	8.20133	0.99935	3.7905	-1.26213
0.8	0.11804	-9.72203	10.19554	8.53347	3.88102	10.76664	8.73135	0.97372	3.45714	-1.48982
0.85	0.06506	-13.721	13.60023	9.27154	4.22007	10.52148	9.65429	0.92172	3.09303	-1.62784
0.9	0.02859	-17.2271	20.42422	10.56107	4.71869	9.91263	11.36186	0.84887	2.70927	-1.68806
0.95	0.00717	-20.4686	40.68178	13.43456	5.60201	8.80617	15.46792	0.76389	2.2989	-1.66284

Tabla 26. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, a=0, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=5.

					$\gamma = \pi/6 y a$	=0				
	Fpr	rt=5	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Сух	Cvv
S	3	φ		inty	Кул		CAA	CXY	Cyx	0,,
0.004	0.9592	-21.053	56.92793	15.87076	6.74831	9.87386	18.14572	0.54471	2.30664	-2.08074
0.008	0.94767	-20.3199	47.95273	14.22647	5.77553	8.72367	16.74646	0.7765	2.29769	-1.67815
0.01	0.9422	-19.9709	44.60876	13.76752	5.58795	8.6847	16.19311	0.80821	2.32599	-1.64092
0.013	0.93437	-19.4686	40.5001	13.25176	5.42074	8.80482	15.48676	0.82684	2.37993	-1.64116
0.02	0.91769	-18.3896	33.65766	12.44184	5.2307	9.31044	14.23657	0.82773	2.51951	-1.7191
0.05	0.86676	-14.9516	20.99698	10.69058	4.77531	10.49519	11.59196	0.84098	2.95064	-1.86753
0.1	0.81883	-11.2312	14.74847	9.39004	4.19113	10.35968	10.04661	0.93888	3.2244	-1.6518
0.2	0.7441	-4.37239	10.94935	8.71945	3.98669	10.52328	9.08481	0.92428	3.74844	-1.55102
0.3	0.69313	1.69212	9.11497	8.34197	3.82767	9.89442	8.613	0.90775	4.00327	-1.25172
0.4	0.65382	7.55688	8.15928	8.09153	3.67911	8.98309	8.39032	0.88543	4.10481	-0.89524
0.5	0.62276	13.2543	7.60275	7.82728	3.4596	7.91649	8.27494	0.87897	4.07819	-0.50218
0.6	0.59751	18.7535	7.18873	7.48602	3.13278	6.81981	8.1873	0.90242	3.95992	-0.0888
0.7	0.57763	23.7996	6.81251	7.07906	2.72046	5.82002	8.09176	0.96068	3.78362	0.31874
0.8	0.56109	28.3033	6.4272	6.64647	2.26866	4.98844	7.98324	1.046	3.59419	0.6969
0.9	0.54666	32.2006	6.03183	6.23492	1.82759	4.34592	7.86871	1.14577	3.42007	1.03334
1	0.53461	35.6894	5.66495	5.87835	1.43378	3.86026	7.76069	1.24395	3.26572	1.32988
1.2	0.51183	41.0095	4.97757	5.32781	0.79047	3.26379	7.57683	1.42958	3.05104	1.81332
1.4	0.48858	44.7487	4.40762	4.96655	0.319	2.95936	7.45602	1.58194	2.93223	2.19456
1.6	0.46835	47.9146	3.97339	4.7295	-0.04148	2.77989	7.38856	1.69935	2.85166	2.5259
1.8	0.44949	50.393	3.62924	4.57559	-0.32912	2.67802	7.36344	1.79242	2.80343	2.82183
2	0.43158	52.6373	3.3529	4.47241	-0.57468	2.61223	7.37185	1.86769	2.77085	3.09897
2.4	0.39886	56.1892	2.93938	4.37014	-0.98249	2.54719	7.46329	1.98111	2.73966	3.61504
2.5	0.39128	56.9784	2.85733	4.359	-1.07375	2.53792	7.49837	2.00387	2.73545	3.73953
2.8	0.36987	59.0999	2.64792	4.35059	-1.32991	2.52044	7.62661	2.06236	2.72894	4.1054
3	0.35663	60.3379	2.53248	4.36181	-1.49024	2.51466	7.72903	2.09488	2.72834	4.34579
3.5	0.32673	63.0544	2.30567	4.43116	-1.86612	2.50995	8.03043	2.15969	2.73304	4.93726
4	0.30086	65.2903	2.13956	4.54476	-2.22072	2.51261	8.38506	2.20802	2.7432	5.52469
5	0.25859	68.7974	1.91772	4.85554	-2.89024	2.52362	9.20123	2.27421	2.76902	6.68813
7	0.19962	73.5687	1.68646	5.68062	-4.17308	2.54381	11.12547	2.34572	2.82444	9.0373
8	0.17914	75.1597	1.62165	6.15342	-4.80134	2.55101	12.17442	2.3666	2.85048	10.22168
10	0.14723	77.6609	1.53997	7.16995	-6.0461	2.56082	14.38761	2.39318	2.90494	12.60615
15	0.1018	81.1461	1.45201	9.79692	-8.9872	2.57141	19.97838	2.4235	3.03178	18.34495
30	0.0589	84.3704	1.38714	15.31906	-14.79449	2.57265	31.48758	2.45447	3.23547	29.82922

Tabla 27. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 49. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 50. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=5

					$\gamma = \pi/6 y a$	=0				
	fprt	=10	Кхх	Kau	Kung	King	Cvar	Car	Curr	Curr
3	S	φ	1000	кху	кух	куу	CXX	Сху	Сух	Суу
0.05	29.8809	83.7097	1.48915	20.32004	-19.74902	2.62549	43.34348	2.34535	4.52892	39.76826
0.1	14.5497	79.729	1.563	10.53333	-9.60548	2.62954	22.21676	2.31117	3.6548	19.64685
0.15	9.30457	75.625	1.67849	7.4236	-6.11972	2.63366	15.37734	2.2619	3.38151	12.8536
0.2	6.58246	71.34	1.84328	5.9969	-4.28646	2.64318	12.12348	2.19439	3.26572	9.38576
0.25	4.87093	66.7722	2.07006	5.26439	-3.09545	2.66847	10.32177	2.10331	3.22691	7.23762
0.3	3.66498	61.7287	2.38031	4.91491	-2.19219	2.73193	9.27142	1.97916	3.253	5.7304
0.35	2.74608	55.8023	2.81056	4.85425	-1.38643	2.89063	8.68867	1.80427	3.37058	4.54995
0.4	2.00237	48.015	3.41064	5.12789	-0.49137	3.32345	8.45373	1.54748	3.67452	3.47654
0.45	1.38693	36.1931	4.09426	5.89083	0.72535	4.63723	8.44548	1.20971	4.39434	2.23106
0.5	0.95779	21.3315	4.29055	6.58635	1.75201	7.19098	8.21538	1.06833	5.3	0.80814
0.55	0.69845	9.65144	4.28525	6.56961	1.97048	9.27002	7.79643	1.17544	5.59206	-0.23618
0.6	0.51764	1.21798	4.5437	6.36486	1.92009	10.46361	7.5287	1.2995	5.43856	-0.91294
0.65	0.37874	-5.21118	5.1101	6.26328	1.89842	11.07994	7.47023	1.37165	5.09459	-1.36784
0.7	0.2686	-10.3518	6.00959	6.34545	1.98413	11.33361	7.61108	1.38725	4.67661	-1.68314
0.75	0.18122	-14.6091	7.35228	6.63852	2.19175	11.33554	7.95536	1.35447	4.23377	-1.9021
0.8	0.11326	-18.2344	9.41077	7.17609	2.52364	11.13385	8.54948	1.28246	3.78582	-2.0478
0.85	0.06253	-21.4011	12.85225	8.04354	2.99208	10.73367	9.5292	1.1787	3.33821	-2.13155
0.9	0.02744	-24.2502	19.68975	9.49316	3.65078	10.09451	11.28597	1.04838	2.88694	-2.15515
0.95	0.00685	-26.9516	39.95834	12.58667	4.75411	9.07434	15.43443	0.89361	2.41291	-2.10452

Tabla 28. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, a=0, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq .95$ en lapsos de .05, *fprt*=10.

					$\gamma = \pi/6 y a$	=0				
	Fpri	t =10	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Сух	Cvv
S	3	φ			N/X	,	CAR	CAY	Cyn	
0.004	0.95859	-27.4102	56.04243	14.86233	5.73988	10.10309	18.11134	0.70133	2.42271	-2.55914
0.008	0.94666	-26.7729	47.23053	13.36014	4.90919	8.95245	16.71194	0.91561	2.41662	-2.10147
0.01	0.94101	-26.4707	43.90513	12.9027	4.72313	8.91772	16.15609	0.9497	2.452	-2.06416
0.013	0.93294	-26.0371	39.8027	12.36522	4.53421	9.04417	15.44493	0.97588	2.51834	-2.07289
0.02	0.91581	-25.1123	32.9434	11.47143	4.2603	9.55765	14.18127	1.00022	2.68772	-2.17908
0.05	0.86424	-22.2426	20.23405	9.47617	3.5609	10.70649	11.48383	1.08859	3.19537	-2.37352
0.1	0.81489	-19.1829	13.99648	8.10883	2.90991	10.67831	9.89577	1.22195	3.54174	-2.18382
0.2	0.73809	-13.664	10.07678	7.25701	2.52424	11.26939	8.84002	1.28263	4.25835	-2.21457
0.3	0.68446	-8.86836	8.11277	6.87587	2.36157	11.18336	8.31247	1.29162	4.71543	-2.04341
0.4	0.64149	-4.22545	7.02975	6.75627	2.34384	10.89081	8.07381	1.25792	5.05536	-1.83217
0.5	0.60568	0.40179	6.39407	6.76732	2.39964	10.43442	7.99754	1.19761	5.29343	-1.58877
0.6	0.57559	5.03953	5.99192	6.82467	2.47143	9.83687	8.00848	1.1261	5.42888	-1.30481
0.7	0.54963	9.72344	5.74206	6.87783	2.51923	9.12643	8.07272	1.05476	5.47225	-0.98756
0.8	0.52793	14.3208	5.58308	6.88518	2.50737	8.33886	8.15391	0.99806	5.41724	-0.63874
0.9	0.50947	18.808	5.47218	6.83007	2.42275	7.52616	8.2319	0.96249	5.28627	-0.27275
1	0.49372	23.1053	5.37605	6.70992	2.26534	6.73783	8.29104	0.95223	5.10084	0.09646
1.2	0.46884	30.7036	5.13537	6.32967	1.79232	5.40027	8.32368	1.00604	4.66387	0.79594
1.4	0.44888	36.5595	4.79945	5.90117	1.25362	4.48426	8.27039	1.1252	4.27792	1.38723
1.6	0.43305	41.5368	4.47229	5.54001	0.76904	3.86499	8.20612	1.24921	3.95741	1.88863
1.8	0.41778	45.3428	4.14403	5.25763	0.35292	3.47888	8.15133	1.3712	3.73489	2.30663
2	0.40023	47.9905	3.82727	5.05382	0.00673	3.25495	8.12831	1.48292	3.61206	2.65728
2.4	0.37201	52.8178	3.3588	4.80227	-0.55036	2.96622	8.16005	1.65199	3.41699	3.28779
2.5	0.36544	53.773	3.26195	4.76453	-0.66821	2.92249	8.18229	1.68666	3.38558	3.43155
2.8	0.34673	56.2453	3.01131	4.6925	-0.988	2.82822	8.27802	1.77619	3.31673	3.84253
3	0.33498	57.769	2.87274	4.66958	-1.18247	2.78284	8.36392	1.82582	3.28249	4.10719
3.5	0.30812	60.8777	2.59804	4.67881	-1.61848	2.71399	8.63648	1.92432	3.23297	4.74062
4	0.28454	63.2687	2.39605	4.75409	-2.01139	2.67956	8.97556	1.99702	3.21474	5.35433
5	0.24551	67.1836	2.12843	5.01698	-2.7288	2.64543	9.78599	2.09498	3.2104	6.55172
7	0.19061	72.1361	1.85055	5.79983	-4.05387	2.62951	11.74552	2.19903	3.2704	8.93115
8	0.17124	73.7491	1.77263	6.26187	-4.69289	2.62817	12.82232	2.22922	3.31162	10.12335
10	0.14136	76.3187	1.67469	7.26458	-5.95148	2.62677	15.10482	2.26769	3.40506	12.51825
15	0.09781	79.895	1.56814	9.87658	-8.90754	2.62574	20.90508	2.31177	3.66379	18.26845
30	0.04886	83.8148	1.50325	15.39617	-14.71738	2.62371	33.57406	2.33918	4.60659	29.75275

Tabla 29. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 51. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 52. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt=10.

					$\gamma = \pi/6 y a$	e=0				
	fprt	=20	Kvv	Kenn		K	Gun	C	C	C
З	S	φ		кху	Кух	куу	Cxx	Сху	Сух	Суу
0.05	27.5704	80.5774	1.69744	20.4863	-19.58276	2.75565	46.76143	2.12749	7.23976	39.59546
0.1	13.2694	76.0631	1.8087	10.73838	-9.40043	2.79653	24.17078	2.06112	5.27265	19.43982
0.15	8.34658	71.1627	1.97737	7.68942	-5.8539	2.86249	16.90666	1.96648	4.72722	12.59365
0.2	5.76308	65.6241	2.21802	6.36329	-3.92008	2.98512	13.51263	1.83335	4.60245	9.03834
0.25	4.10794	58.9104	2.54886	5.80974	-2.55009	3.24557	11.71508	1.64526	4.77004	6.73032
0.3	2.90973	49.7331	2.95887	5.79563	-1.31147	3.89391	10.75088	1.38677	5.35762	4.88768
0.35	2.00743	35.6491	3.18642	6.17141	-0.06927	5.63191	10.03987	1.16148	6.6595	2.98534
0.4	1.43759	19.3908	2.9062	6.01662	0.39735	8.21982	8.85702	1.32338	7.84257	1.1604
0.45	1.09585	7.15701	2.78282	5.3045	0.13901	9.9072	7.73506	1.66551	7.95534	-0.05364
0.5	0.85125	-1.63034	2.98067	4.67663	-0.15771	10.74334	7.04807	1.92643	7.52726	-0.82912
0.55	0.65814	-8.28921	3.38738	4.29541	-0.30372	11.1273	6.72362	2.07498	6.93217	-1.35985
0.6	0.50024	-13.5689	3.95125	4.15539	-0.28938	11.27373	6.65869	2.1303	6.3088	-1.74396
0.65	0.37016	-17.8972	4.68555	4.2282	-0.13666	11.28208	6.78855	2.11404	5.70351	-2.03098
0.7	0.26372	-21.5381	5.65961	4.49574	0.13442	11.1949	7.08557	2.0431	5.12865	-2.24729
0.75	0.17809	-24.6669	7.01793	4.95963	0.51286	11.02534	7.55696	1.92964	4.58385	-2.40751
0.8	0.11115	-27.409	9.0542	5.65203	0.99957	10.76807	8.25528	1.78191	4.06361	-2.51939
0.85	0.06117	-29.8634	12.44807	6.66642	1.61496	10.40052	9.32183	1.60474	3.55924	-2.58565
0.9	0.02672	-32.1235	19.22011	8.27081	2.42843	9.8727	11.15263	1.39892	3.05745	-2.6034
0.95	0.00662	-34.325	39.41203	11.56132	3.72876	9.05535	15.36644	1.157	2.52961	-2.55658

Tabla 30. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, a==, (L/D) = (1/4), .05 \le \varepsilon_{pres} \ge .95 en lapsos de .05, *fprt*=20.

					$\gamma = \pi/6 y a$	=0				
	Fpr	t=20	Кхх	Kxv	Kvx	Kwy	Схх	Сху	Cvx	Cvv
S	3	φ		i kay	Кух	i y y	CAA	CAY	Cyx	Cyy
0.004	0.95809	-34.6795	55.37447	13.67886	4.55641	10.05118	18.04235	1.00177	2.54416	-3.05739
0.008	0.94589	-34.1449	46.69904	12.33138	3.88044	8.89311	16.64115	1.18472	2.53747	-2.53071
0.01	0.94014	-33.8923	43.39464	11.8747	3.69513	8.84822	16.08033	1.22222	2.57867	-2.48911
0.013	0.93192	-33.5311	39.30775	11.31265	3.48163	8.95646	15.36006	1.26002	2.65566	-2.50107
0.02	0.91453	-32.7656	32.46182	10.32931	3.11817	9.4226	14.07263	1.31948	2.8509	-2.62577
0.05	0.86275	-30.4528	19.80287	8.10493	2.18966	10.40223	11.29404	1.50575	3.4189	-2.83849
0.1	0.81299	-28.0571	13.63688	6.66285	1.46393	10.33443	9.63554	1.68887	3.80985	-2.63953
0.2	0.73594	-23.8339	9.74272	5.53131	0.79854	10.99492	8.41145	1.8797	4.65072	-2.73673
0.3	0.68167	-20.274	7.74748	4.96619	0.45189	11.13186	7.74035	1.9753	5.23781	-2.63783
0.4	0.63758	-16.8972	6.58446	4.69301	0.28059	11.17115	7.36345	2.01397	5.74205	-2.52212
0.5	0.60008	-13.5768	5.82699	4.59257	0.2249	11.14296	7.15826	2.01111	6.18858	-2.39783
0.6	0.56724	-10.2431	5.26997	4.59959	0.24636	11.06013	7.0605	1.97723	6.59135	-2.25921
0.7	0.5382	-6.86519	4.84714	4.68614	0.32755	10.91939	7.04854	1.91742	6.94687	-2.1028
0.8	0.51222	-3.42021	4.5221	4.83006	0.45225	10.7193	7.1079	1.8369	7.25444	-1.92724
0.9	0.48892	0.10011	4.27592	5.01436	0.60703	10.45672	7.22864	1.74009	7.5072	-1.7302
1	0.46798	3.68861	4.09834	5.22137	0.7768	10.12858	7.40047	1.63247	7.69853	-1.51085
1.2	0.43259	10.9296	3.90447	5.62778	1.09043	9.28486	7.84249	1.41215	7.86696	-0.99924
1.4	0.40457	18.0758	3.86601	5.93415	1.2866	8.27168	8.32924	1.22089	7.75741	-0.41449
1.6	0.3825	24.7759	3.89104	6.07488	1.30391	7.22571	8.75912	1.09374	7.43146	0.20336
1.8	0.36497	30.6853	3.90049	6.06003	1.15532	6.2852	9.07487	1.04095	6.99749	0.8058
2	0.3505	35.4958	3.84873	5.9454	0.89831	5.53654	9.26955	1.05312	6.5673	1.35518
2.4	0.32834	43.6188	3.68959	5.67057	0.31794	4.4668	9.51671	1.13978	5.78529	2.31403
2.5	0.32327	45.2045	3.6312	5.60429	0.17155	4.2846	9.55715	1.17162	5.6358	2.5216
2.8	0.30693	48.8364	3.42371	5.43941	-0.24109	3.90188	9.6734	1.27619	5.33466	3.07209
3	0.29616	50.6174	3.28442	5.3634	-0.48865	3.73511	9.75992	1.3432	5.21073	3.39923
3.5	0.27613	54.6107	3.01336	5.26143	-1.03586	3.42422	9.99548	1.47983	4.90525	4.16815
4	0.25509	58.0906	2.79853	5.24935	-1.51612	3.23092	10.34445	1.58346	4.74502	4.87395
5	0.22124	62.4329	2.48372	5.41033	-2.33546	3.04844	11.16275	1.73401	4.62817	6.16785
7	0.1731	68.3084	2.15152	6.08992	-3.76377	2.89587	13.22579	1.89505	4.63305	8.6446
8	0.15554	70.3191	2.05742	6.52424	-4.43052	2.86052	14.38446	1.94135	4.69597	9.86274
10	0.12992	72.8901	1.93101	7.49256	-5.7235	2.82256	16.7946	2.00603	4.86017	12.28882
15	0.09224	76.5979	1.78695	10.06173	-8.72239	2.77802	22.93054	2.0854	5.33982	18.07889
30	0.02012	84.6546	2.20612	15.87453	-14.23902	2.949	66.1656	1.62237	26.58986	29.26518

Tabla 31. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 53. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 54. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

					γ= π/6 y a	=0				
	fprt	=50	Kvv	Kana	King	Kind	Curr	Cont	Curr	Curre
3	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	21.1407	66.6754	2.16829	21.22891	-18.84015	3.76597	57.63924	1.43412	23.03919	38.58838
0.1	9.66889	57.7125	2.24373	11.68808	-8.45073	4.39697	30.10432	1.30183	16.2648	18.03321
0.15	5.69222	44.801	2.14319	8.784	-4.75932	5.71774	20.4665	1.27882	15.79484	10.4557
0.2	3.7682	27.158	1.72897	6.87666	-3.40671	7.84951	13.91599	1.72852	16.6367	5.91066
0.25	2.79643	10.6899	1.63162	4.82185	-3.53799	9.32476	8.97236	2.54692	15.76786	3.11479
0.3	2.20764	-1.31552	2.00043	3.25322	-3.85388	9.76349	6.24083	3.19266	13.86178	1.48248
0.35	1.77626	-10.0204	2.50024	2.27824	-3.96244	9.76934	4.95933	3.57841	12.01548	0.43737
0.4	1.43025	-16.6096	2.98381	1.72518	-3.89409	9.66323	4.44843	3.77318	10.48128	-0.30589
0.45	1.1427	-21.7941	3.42795	1.45346	-3.71203	9.55507	4.34805	3.83858	9.23724	-0.8761
0.5	0.90102	-25.9986	3.85244	1.37849	-3.45585	9.47477	4.47928	3.81476	8.21607	-1.33547
0.55	0.69793	-29.4903	4.29258	1.45375	-3.14538	9.42391	4.75359	3.72684	7.35739	-1.7164
0.6	0.52833	-32.4467	4.79438	1.65628	-2.78849	9.39445	5.12918	3.59088	6.61562	-2.03695
0.65	0.38822	-34.9915	5.4196	1.97911	-2.38575	9.37511	5.59181	3.41735	5.95773	-2.30783
0.7	0.27423	-37.2153	6.26011	2.42879	-1.93253	9.35302	6.14807	3.21312	5.3596	-2.53553
0.75	0.18345	-39.1881	7.47016	3.02806	-1.41871	9.31376	6.82774	2.98243	4.80302	-2.72392
0.8	0.11334	-40.9671	9.34653	3.82671	-0.82575	9.24036	7.69849	2.72715	4.27314	-2.87511
0.85	0.0617	-42.6058	12.5679	4.93457	-0.11689	9.10946	8.91223	2.44624	3.75569	-2.98924
0.9	0.02662	-44.1659	19.15012	6.63889	0.79651	8.88226	10.87323	2.13344	3.23243	-3.06342
0.95	0.00649	-45.7594	39.12267	10.07163	2.23907	8.46894	15.20889	1.76729	2.6664	-3.08646

Tabla 32. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon pres \geq$.95 en lapsos de .05, *fprt*=50.

					$\gamma = \pi/6 y a$	=0				
	Fprt	=50	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Сух	Cvv
S	3	φ		,		,,	••••	City		-//
0.004	0.9577	-46.0069	54.98955	11.97549	2.85304	9.4412	17.88138	1.68748	2.69455	-3.67771
0.008	0.94552	-45.6156	46.43826	10.8692	2.41825	8.26423	16.47814	1.78962	2.67435	-3.02597
0.01	0.93978	-45.4315	43.16515	10.42436	2.24478	8.18346	15.90739	1.82941	2.71781	-2.96657
0.013	0.93157	-45.1691	39.11472	9.84421	2.01319	8.23015	15.16898	1.88481	2.80098	-2.96697
0.02	0.91425	-44.617	32.33641	8.77391	1.56277	8.55331	13.83514	2.00266	3.01364	-3.08746
0.05	0.86298	-43.0078	19.87716	6.36416	0.44889	9.17581	10.91206	2.33614	3.6169	-3.27272
0.1	0.8151	-41.4843	13.86967	4.94639	-0.25253	8.84293	9.14705	2.56276	3.97187	-2.95677
0.2	0.73982	-38.8052	10.22672	3.58651	-1.14626	9.24102	7.64617	2.95091	4.83461	-3.0384
0.3	0.68763	-36.6922	8.38296	2.86541	-1.64889	9.26157	6.74655	3.17411	5.41202	-2.91236
0.4	0.64537	-34.7709	7.3301	2.41689	-1.99553	9.26668	6.13711	3.33372	5.91508	-2.79069
0.5	0.6093	-32.9494	6.65278	2.11791	-2.24976	9.27229	5.68469	3.4526	6.37977	-2.68171
0.6	0.57767	-31.1857	6.14759	1.90702	-2.44622	9.28067	5.3215	3.54224	6.82102	-2.57557
0.7	0.54944	-29.4545	5.74696	1.75932	-2.59927	9.29231	5.02357	3.60824	7.24643	-2.4716
0.8	0.52372	-27.7338	5.41363	1.65639	-2.72142	9.31179	4.77289	3.65663	7.66885	-2.37227
0.9	0.50023	-26.0161	5.1242	1.59189	-2.81544	9.33457	4.56489	3.68781	8.08515	-2.27352
1	0.47843	-24.2874	4.86807	1.55734	-2.88724	9.36337	4.39123	3.70537	8.5052	-2.17866
1.2	0.43929	-20.7786	4.41435	1.56631	-2.97104	9.43024	4.14243	3.70125	9.35109	-1.98984
1.4	0.40485	-17.1661	4.01378	1.66311	-2.98444	9.504	4.01706	3.651	10.2158	-1.80289
1.6	0.37421	-13.4231	3.64739	1.83669	-2.93428	9.57483	4.01698	3.55896	11.1005	-1.61247
1.8	0.34691	-9.5522	3.31028	2.07994	-2.82477	9.62724	4.15094	3.42851	11.98906	-1.4114
2	0.32248	-5.54909	3.00419	2.38492	-2.66217	9.65014	4.42568	3.2642	12.8696	-1.19539
2.4	0.28157	2.63461	2.51421	3.12628	-2.22635	9.54024	5.39107	2.86471	14.46361	-0.68922
2.5	0.27284	4.68537	2.42161	3.32724	-2.1055	9.47552	5.71088	2.75643	14.80694	-0.54541
2.8	0.24975	10.7605	2.22068	3.9336	-1.7469	9.19329	6.81643	2.42908	15.66228	-0.07396
3	0.23673	14.6349	2.14729	4.31531	-1.53674	8.93864	7.62762	2.22285	16.0668	0.27229
3.5	0.21085	23.3248	2.11756	5.10532	-1.19197	8.17197	9.66605	1.79723	16.53395	1.20383
4	0.19224	30.4019	2.19202	5.64845	-1.11703	7.38929	11.47232	1.51583	16.42172	2.16319
5	0.16731	41.0015	2.37404	6.29437	-1.45142	6.11867	14.28295	1.2395	15.49139	3.9793
7	0.13633	49.7904	2.33159	6.9986	-2.85509	4.96895	17.45712	1.28206	14.52531	7.01563
8	0.12769	52.1717	2.27695	7.3781	-3.57666	4.64674	18.6334	1.34641	13.97418	8.42215
10	0.09819	57.7877	2.29784	8.36459	-4.85146	4.33806	23.34144	1.30899	16.23562	10.9565
15	0.0899	52.2955	1.79253	10.55363	-8.23049	4.02964	25.53595	1.79735	14.10707	17.07974
30	-	-	-	-	-	-	-	-	-	-

Tabla 33. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 55. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 56. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

					$\gamma = \pi/6 y a$	=0				
	fprt	=100	Kvv	K	K	K	Const	C	C	C
3	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	16.179	21.3737	1.33006	19.69598	-20.37307	8.21911	33.96424	2.9432	74.61532	35.30083
0.1	8.36552	3.92089	1.99907	8.40962	-11.72919	8.32638	7.95332	4.13639	39.37808	15.07551
0.15	5.81255	-9.02811	2.90362	4.41868	-9.12464	7.79372	1.74225	4.89581	25.60003	8.56162
0.2	4.43437	-18.2605	3.62331	2.57505	-7.70831	7.26669	0.26431	5.27658	18.56386	5.40979
0.25	3.49621	-25.0971	4.13471	1.61786	-6.74198	6.89693	0.17072	5.44046	14.52916	3.52202
0.3	2.78432	-30.3755	4.50083	1.08715	-6.01995	6.6729	0.52438	5.48162	11.99915	2.22831
0.35	2.21659	-34.5871	4.77762	0.79039	-5.45029	6.56069	1.03124	5.44709	10.28919	1.2586
0.4	1.75403	-38.0318	5.00613	0.63991	-4.97935	6.53154	1.5918	5.36057	9.05572	0.48627
0.45	1.37431	-40.903	5.21824	0.5943	-4.57118	6.56418	2.17225	5.23455	8.11284	-0.15469
0.5	1.06249	-43.3328	5.44268	0.63482	-4.19952	6.64259	2.76345	5.07607	7.3534	-0.70132
0.55	0.80741	-45.4158	5.71025	0.7553	-3.84383	6.75416	3.36713	4.88938	6.71243	-1.1756
0.6	0.60019	-47.2226	6.05945	0.95772	-3.48705	6.88826	3.99158	4.67721	6.14882	-1.59118
0.65	0.43351	-48.8082	6.54481	1.25107	-3.11379	7.03528	4.65151	4.44138	5.63546	-1.95687
0.7	0.30129	-50.2172	7.25185	1.65262	-2.7087	7.1859	5.371	4.18293	5.15369	-2.27855
0.75	0.19847	-51.4876	8.32922	2.19272	-2.25405	7.33041	6.19084	3.90194	4.68966	-2.56027
0.8	0.12081	-52.6546	10.06836	2.92719	-1.72527	7.45763	7.18609	3.59703	4.23172	-2.8048
0.85	0.06481	-53.7558	13.14192	3.97131	-1.08015	7.55296	8.51414	3.26411	3.76772	-3.01395
0.9	0.02754	-54.8422	19.55687	5.61896	-0.22342	7.59312	10.58437	2.89282	3.27994	-3.1883
0.95	0.0066	-56.0201	39.32345	9.01497	1.18241	7.52636	15.03193	2.45281	2.72827	-3.32614

Tabla 34. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = \pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=100.

					$\gamma = \pi/6 y a$	=0				
	Fprt	=100	Кхх	Kyy	Kvy	Kwy	Cvv	Cxv	Cvx	CVV
S	3	φ		ixy.	Кух	куу	C//	CAY	Cyx	Cyy
0.004	0.95775	-56.207	55.17917	10.73537	1.61292	8.50335	17.69601	2.4734	2.77694	-4.02953
0.008	0.946	-55.9239	46.65047	9.85657	1.40563	7.32287	16.29905	2.45522	2.72962	-3.24765
0.01	0.94044	-55.7909	43.39636	9.44006	1.26049	7.20326	15.72075	2.48729	2.76683	-3.15996
0.013	0.9325	-55.6016	39.37677	8.87336	1.04234	7.18329	14.96722	2.54905	2.84343	-3.13247
0.02	0.91567	-55.205	32.67058	7.793	0.58187	7.35647	13.59324	2.70664	3.04594	-3.21575
0.05	0.86555	-54.0786	20.40993	5.37418	-0.54108	7.68966	10.5461	3.14776	3.62774	-3.34334
0.1	0.82117	-53.1583	14.47611	4.13305	-1.06587	7.13612	8.73692	3.33038	3.87305	-2.86208
0.2	0.74913	-51.4666	11.05987	2.80875	-1.92401	7.25127	7.0521	3.83619	4.62688	-2.85618
0.3	0.70054	-50.2318	9.33655	2.15132	-2.36299	7.10222	6.04029	4.10173	5.07036	-2.63807
0.4	0.66148	-49.147	8.38528	1.73926	-2.67317	6.98204	5.32729	4.30242	5.44171	-2.44495
0.5	0.62859	-48.1546	7.7973	1.4625	-2.90518	6.87795	4.77882	4.4591	5.7651	-2.2703
0.6	0.60005	-47.2243	7.37518	1.26034	-3.0929	6.78879	4.32206	4.58634	6.05764	-2.10428
0.7	0.5745	-46.3338	7.05999	1.10283	-3.25577	6.71737	3.92108	4.69695	6.33754	-1.95117
0.8	0.55161	-45.4781	6.80818	0.9825	-3.39531	6.65467	3.56834	4.78901	6.59943	-1.80205
0.9	0.53058	-44.6449	6.60432	0.88487	-3.52245	6.60404	3.24469	4.87112	6.85681	-1.66115
1	0.51129	-43.832	6.43323	0.80808	-3.6365	6.56082	2.94936	4.94172	7.10589	-1.5249
1.2	0.47666	-42.2487	6.15589	0.69592	-3.84143	6.49674	2.41567	5.05961	7.5962	-1.26468
1.4	0.44628	-40.7062	5.93581	0.62553	-4.02202	6.4559	1.94198	5.15127	8.08197	-1.01856
1.6	0.41906	-39.1881	5.75227	0.58257	-4.18841	6.43548	1.50638	5.22499	8.5777	-0.78499
1.8	0.39454	-37.6875	5.59001	0.56227	-4.34244	6.43081	1.10573	5.28171	9.08344	-0.56012
2	0.37212	-36.1954	5.44346	0.55802	-4.48907	6.44079	0.72671	5.32648	9.61069	-0.344
2.4	0.33262	-33.2252	5.17448	0.59047	-4.76216	6.49546	0.03099	5.38235	10.73335	0.06949
2.5	0.32366	-32.4833	5.11045	0.6055	-4.82724	6.51553	-0.1331	5.3906	11.03195	0.16938
2.8	0.29876	-30.259	4.92112	0.66604	-5.01446	6.5881	-0.5988	5.40202	11.97062	0.46295
3	0.2835	-28.7732	4.79716	0.71702	-5.13503	6.6467	-0.89528	5.4013	12.64336	0.65392
3.5	0.24977	-25.0691	4.48668	0.88272	-5.41457	6.81797	-1.56064	5.36814	14.47191	1.12027
4	0.22134	-21.4001	4.1739	1.09946	-5.66602	7.01421	-2.106	5.29746	16.51814	1.58101
5	0.17677	-14.3143	3.56436	1.66213	-6.08366	7.43163	-2.80081	5.07565	21.25325	2.49744
7	0.12251	-2.1976	2.554	3.17135	-6.68234	8.07398	-2.03483	4.46955	31.83171	4.51296
8	0.10558	2.49141	2.21523	3.98776	-6.967	8.24219	-0.87939	4.18616	37.15957	5.61776
10	0.08741	9.83294	1.74672	5.69419	-7.52187	8.18255	3.77406	3.62836	43.15844	8.13961
15	-	-	-	-	-	-	-	-	_	-
30	-	-	-	-	-	-	-	-	-	-

Tabla 35. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 57. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 58. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Coeficientes rotodinámicos para un punto de inyección para $\gamma = 11\pi/6$ y a=0.

				2	$v = 11\pi/6 \text{ y}$	a=0				
	fpr	t=1	Кхх	Kvv	Kuy	Kww	Cvv	Cvv	Cvix	CVV
3	S	φ		КЛУ	Кул	куу	C//	Слу	Сул	Суу
0.05	32.032	86.5636	1.3031	20.18115	-19.88791	2.548	40.49709	2.52679	2.39518	39.90427
0.1	15.7442	82.9086	1.34354	10.37232	-9.76649	2.53589	20.60733	2.51712	2.46255	19.79942
0.15	10.1953	79.2615	1.4128	7.2301	-6.31322	2.51636	14.14263	2.50041	2.47051	13.02958
0.2	7.33649	75.6235	1.5121	5.75478	-4.52859	2.48976	11.03595	2.47704	2.45896	9.59543
0.25	5.55934	71.9952	1.64341	4.94688	-3.41296	2.45663	9.27495	2.44745	2.43623	7.49756
0.3	4.32893	68.3761	1.8097	4.47386	-2.63324	2.41758	8.19002	2.41217	2.40546	6.06977
0.35	3.41681	64.7651	2.01528	4.19408	-2.0466	2.37333	7.49571	2.37179	2.36837	5.02673
0.4	2.70938	61.1595	2.26636	4.03785	-1.58142	2.32467	7.05109	2.32691	2.32613	4.22582
0.45	2.14398	57.5551	2.57193	3.96791	-1.19757	2.27241	6.78022	2.27813	2.27971	3.58779
0.5	1.6833	53.9456	2.94514	3.96387	-0.87047	2.2174	6.64055	2.226	2.22991	3.06499
0.55	1.30381	50.3225	3.40555	4.01532	-0.58381	2.16052	6.60911	2.171	2.17744	2.62696
0.6	0.98992	46.6742	3.9832	4.11897	-0.3258	2.10269	6.67633	2.11346	2.12294	2.25324
0.65	0.73089	42.986	4.72601	4.27778	-0.08708	2.04499	6.84413	2.05351	2.06693	1.92944
0.7	0.51906	39.2391	5.71473	4.50211	0.1408	1.98878	7.12742	1.99087	2.00979	1.64512
0.75	0.34879	35.4107	7.09586	4.81335	0.36658	1.93621	7.56048	1.92457	1.95176	1.39249
0.8	0.21582	31.4764	9.16391	5.25337	0.60091	1.89152	8.21391	1.85214	1.89282	1.16585
0.85	0.11688	27.4196	12.60785	5.91067	0.8592	1.86505	9.2425	1.76772	1.83252	0.96183
0.9	0.04944	23.2663	19.48963	7.01319	1.17081	1.88863	11.05462	1.65659	1.76977	0.7818
0.95	0.01141	19.1662	39.99835	9.49318	1.66062	2.09196	15.2834	1.47866	1.70384	0.64227

Tabla 36. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11 \pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=1.

				γ	$v = 11\pi/6 y$	a=0				
	fpr	t =1	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Сух	Суу
S	3	φ		ioty	NyA	,	CAR	<i>City</i>	Cyn	011
0.004	0.96232	18.1615	56.71525	10.63991	1.51746	2.54468	17.98369	1.22331	1.65608	0.74457
0.008	0.95555	18.7132	47.51462	10.19833	1.74739	2.19552	16.57022	1.41482	1.68857	0.64342
0.01	0.95227	18.9809	44.10495	9.92356	1.74399	2.12462	16.00433	1.45531	1.69671	0.63233
0.013	0.94747	19.3726	39.92032	9.53638	1.70537	2.05817	15.27778	1.49501	1.70583	0.62997
0.02	0.93685	20.2411	32.9574	8.79341	1.58227	1.97805	13.98132	1.54879	1.72129	0.64828
0.05	0.89941	23.3152	20.13214	7.12318	1.20791	1.88366	11.21412	1.65401	1.76651	0.76743
0.1	0.85936	26.6378	13.8542	6.13211	0.93319	1.86199	9.59467	1.74424	1.81704	0.91372
0.2	0.81002	30.6858	9.87181	5.40278	0.67002	1.87906	8.43333	1.83552	1.87839	1.10855
0.3	0.76822	33.9823	7.83751	4.97765	0.46335	1.91533	7.79678	1.89701	1.92795	1.2952
0.4	0.73357	36.6814	6.65383	4.71588	0.30345	1.95002	7.42032	1.94417	1.96825	1.46038
0.5	0.70501	38.8609	5.88411	4.54142	0.17375	1.98061	7.17936	1.98194	2.00154	1.60667
0.6	0.67954	40.7821	5.31582	4.41157	0.05834	2.00889	7.00844	2.01447	2.03089	1.74515
0.7	0.65663	42.4938	4.87601	4.31176	-0.04683	2.03494	6.88416	2.04311	2.05715	1.87754
0.8	0.63561	44.0533	4.52205	4.23299	-0.14482	2.05911	6.79245	2.06882	2.08099	2.00573
0.9	0.61621	45.4849	4.22945	4.16991	-0.23741	2.08162	6.72497	2.09219	2.10283	2.13076
1	0.59823	46.804	3.98402	4.11934	-0.32524	2.1025	6.6765	2.11351	2.12287	2.25258
1.2	0.56546	49.1986	3.58908	4.04521	-0.49214	2.1406	6.62126	2.15156	2.15888	2.49179
1.4	0.53636	51.3132	3.28614	3.99836	-0.64919	2.17417	6.6075	2.18445	2.19017	2.72504
1.6	0.51015	53.2117	3.04479	3.97129	-0.79968	2.20408	6.62396	2.21334	2.21774	2.95495
1.8	0.48634	54.9331	2.84784	3.95956	-0.94515	2.23085	6.66377	2.23891	2.24218	3.18245
2	0.46455	56.506	2.68381	3.96013	-1.08696	2.25493	6.72241	2.26173	2.26398	3.40864
2.4	0.42599	59.2862	2.42671	3.99037	-1.36226	2.29633	6.88412	2.30059	2.30105	3.85868
2.5	0.41725	59.9161	2.37369	4.00297	-1.42977	2.30547	6.93226	2.30911	2.30916	3.971
2.8	0.39289	61.6724	2.23517	4.0508	-1.6297	2.33039	7.09199	2.33225	2.33113	4.30768
3	0.37797	62.748	2.15665	4.09028	-1.76177	2.34523	7.21034	2.34597	2.34408	4.53315
3.5	0.34483	65.1385	1.99793	4.21059	-2.0867	2.37689	7.53905	2.37508	2.37135	5.09699
4	0.31643	67.1889	1.87768	4.35732	-2.40816	2.40247	7.90897	2.39844	2.3929	5.66587
5	0.27091	70.4808	1.71227	4.7076	-3.03818	2.44007	8.73456	2.43256	2.42343	6.80634
7	0.20827	75.0235	1.53396	5.56858	-4.28511	2.48408	10.63614	2.47202	2.45534	9.1334
8	0.18618	76.6287	1.48344	6.05061	-4.90415	2.49728	11.66676	2.48372	2.4631	10.31182
10	0.15295	79.0468	1.41931	7.07839	-6.13766	2.51455	13.82692	2.49888	2.46997	12.68892
15	0.10656	82.4317	1.3516	9.71796	-9.06616	2.5334	19.26802	2.51537	2.46633	18.41901
30	0.06546	85.4423	1.31046	15.25713	-14.85642	2.54382	30.50023	2.52734	2.45022	29.88897

Tabla 37. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

Figura 59. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

Figura 60. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

				}	$v = 11\pi/6$ y	a=0				
	fpr	t=5	Kyy			14	6	6	6	<u> </u>
З	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	31.2229	87.4319	1.368	20.1417	-19.92736	2.57197	41.53104	2.46088	1.76677	39.94432
0.1	15.3661	83.7326	1.40418	10.33556	-9.80326	2.55818	21.09528	2.45468	2.16674	19.83727
0.15	9.95835	80.0582	1.47084	7.19496	-6.34836	2.53762	14.45407	2.44025	2.28199	13.066
0.2	7.16846	76.4081	1.569	5.72036	-4.56301	2.51058	11.26274	2.4181	2.32178	9.63109
0.25	5.43165	72.7821	1.70053	4.91232	-3.44752	2.47753	9.45355	2.38873	2.32817	7.53308
0.3	4.22742	69.1801	1.86843	4.43829	-2.66881	2.43912	8.33858	2.35269	2.31549	6.10579
0.35	3.33352	65.602	2.07714	4.15654	-2.08414	2.39611	7.62458	2.31048	2.29016	5.06393
0.4	2.63945	62.0478	2.33317	3.99717	-1.62209	2.34942	7.16685	2.26259	2.25567	4.26497
0.45	2.08424	58.5172	2.64599	3.92263	-1.24285	2.30008	6.88739	2.20936	2.21419	3.62983
0.5	1.63164	55.0101	3.02948	3.91198	-0.92236	2.24931	6.74255	2.15102	2.16717	3.11111
0.55	1.25878	51.5277	3.5044	3.95399	-0.64514	2.19855	6.70872	2.08748	2.11566	2.67877
0.6	0.95057	48.0731	4.10266	4.04397	-0.4008	2.14973	6.77603	2.01826	2.06039	2.31298
0.65	0.69665	44.6546	4.87513	4.18262	-0.18224	2.10563	6.94631	1.94222	2.00177	2.0004
0.7	0.48966	41.2898	5.90728	4.37632	0.015	2.07079	7.23451	1.85722	1.93992	1.73231
0.75	0.32431	38.0139	7.35281	4.63953	0.19276	2.05337	7.67481	1.7595	1.87462	1.50386
0.8	0.19665	34.8911	9.51589	5.00221	0.34975	2.06958	8.33717	1.64289	1.80533	1.31437
0.85	0.10361	32.0271	13.09166	5.53424	0.48277	2.15395	9.37369	1.4982	1.73172	1.16893
0.9	0.04238	29.5581	20.11447	6.44643	0.60405	2.38491	11.18497	1.31391	1.65576	1.0815
0.95	0.00951	27.555	40.59995	8.71785	0.88529	2.96427	15.3866	1.07891	1.59014	1.08269

Tabla 38. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pre}s \geq$.95 en lapsos de .05, *fprt*=5.

				γ	$v = 11\pi/6 y$	a=0				
	fpr	t=5	Кхх	Kxv	Kvx	Kwy	Схх	Сху	Cvx	Cvvv
S	3	φ		КЛУ	Кух	i kyy	CAA	CAY	Cyx	Cyy
0.004	0.96059	27.1556	57.27359	9.64433	0.52188	3.84054	18.10491	0.70197	1.50782	1.38829
0.008	0.95283	27.4478	48.02014	9.45828	1.00734	3.07945	16.67057	1.02407	1.57424	1.09317
0.01	0.94908	27.5899	44.6115	9.22933	1.04976	2.92625	16.10319	1.08612	1.58724	1.04529
0.013	0.94364	27.7982	40.43662	8.88144	1.05043	2.7824	15.37763	1.14228	1.59928	1.01006
0.02	0.93169	28.2622	33.50302	8.18186	0.97072	2.60367	14.08839	1.20827	1.61455	0.99072
0.05	0.89123	29.9407	20.71292	6.60803	0.69277	2.32576	11.34742	1.3272	1.65326	1.04652
0.1	0.85196	31.9111	14.32491	5.76118	0.56226	2.14959	9.72489	1.47771	1.71641	1.1202
0.2	0.79858	34.9801	10.21055	5.16072	0.42795	2.05086	8.55595	1.63095	1.79156	1.25368
0.3	0.75988	37.433	8.0993	4.79806	0.28375	2.03798	7.91009	1.7297	1.85063	1.40951
0.4	0.72544	39.6036	6.87247	4.57054	0.15812	2.04634	7.5305	1.7973	1.89525	1.55776
0.5	0.69721	41.4752	6.07095	4.4194	0.05173	2.06013	7.28573	1.85103	1.93225	1.69201
0.6	0.67192	43.1689	5.47995	4.30578	-0.04746	2.07697	7.11228	1.89519	1.96409	1.82193
0.7	0.64927	44.7044	5.02291	4.21797	-0.14063	2.09474	6.98606	1.93293	1.99219	1.9478
0.8	0.62836	46.1275	4.65568	4.14833	-0.22948	2.11269	6.89316	1.96577	2.01726	2.07096
0.9	0.60916	47.4433	4.35246	4.09246	-0.31487	2.13034	6.82486	1.99497	2.04	2.19194
1	0.59128	48.6731	4.09839	4.04767	-0.3969	2.14737	6.77595	2.0211	2.06061	2.31044
1.2	0.55879	50.9176	3.69035	3.98224	-0.55511	2.17972	6.72071	2.06662	2.09709	2.54458
1.4	0.52988	52.9258	3.378	3.94155	-0.706	2.20927	6.70782	2.10499	2.12818	2.77416
1.6	0.50388	54.7392	3.12964	3.91905	-0.85193	2.23624	6.72577	2.13804	2.15509	3.0013
1.8	0.48019	56.3966	2.92733	3.91078	-0.99394	2.26077	6.76761	2.16684	2.17848	3.22667
2	0.45856	57.9151	2.75908	3.91405	-1.13304	2.28313	6.82866	2.19222	2.19898	3.45118
2.4	0.42023	60.6162	2.49594	3.94815	-1.40448	2.32206	6.9962	2.23477	2.23273	3.8988
2.5	0.41156	61.2295	2.44175	3.96149	-1.47125	2.33073	7.04596	2.24401	2.23991	4.01066
2.8	0.38732	62.9466	2.30037	4.01114	-1.66936	2.35451	7.21091	2.26891	2.25881	4.3462
3	0.37251	63.9985	2.22036	4.05156	-1.80049	2.36875	7.33301	2.28353	2.26955	4.57108
3.5	0.33958	66.3454	2.05891	4.1736	-2.12369	2.39932	7.67185	2.31429	2.29082	5.13385
4	0.31143	68.3601	1.93692	4.32142	-2.44406	2.42421	8.05285	2.33867	2.30575	5.70208
5	0.26628	71.6076	1.76966	4.67287	-3.07292	2.46109	8.90244	2.37378	2.32186	6.84191
7	0.20419	76.1041	1.59078	5.53421	-4.31948	2.50487	10.85882	2.41318	2.32067	9.169
8	0.1826	77.6779	1.54041	6.01614	-4.93862	2.51813	11.91784	2.42464	2.31122	10.34757
10	0.14946	80.0976	1.47742	7.04321	-6.17284	2.53584	14.14163	2.43865	2.27952	12.72537
15	0.10339	83.4865	1.41153	9.68163	-9.10249	2.55542	19.73794	2.45363	2.18155	18.45644
30	0.06024	86.6911	1.36637	15.22316	-14.8904	2.56446	31.25502	2.47038	1.99201	29.92357

Tabla 39. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma=11 \pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 61. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 62. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

				}	$v = 11\pi/6 \text{ y}$	a=0				
	fprt	=10	Kvv			K	Com	C	C	Grad
З	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	30.2269	88.5768	1.44972	20.08795	-19.9811	2.60719	42.86432	2.3759	0.89087	40.00015
0.1	14.9024	84.8111	1.48008	10.28598	-9.85284	2.59046	21.72071	2.37464	1.75859	19.8895
0.15	9.66876	81.0947	1.54307	7.14798	-6.39534	2.5681	14.85118	2.36354	2.02392	13.11585
0.2	6.96399	77.4234	1.63938	5.67466	-4.60871	2.54017	11.55051	2.34331	2.13512	9.6796
0.25	5.277	73.7956	1.77074	4.86672	-3.49312	2.50706	9.67911	2.31458	2.18184	7.58119
0.3	4.10518	70.2109	1.94009	4.39163	-2.71547	2.46941	8.52527	2.27794	2.19409	6.1544
0.35	3.23392	66.6703	2.152	4.10757	-2.13311	2.42805	7.78566	2.23386	2.18494	5.11399
0.4	2.55653	63.1759	2.41318	3.94444	-1.67483	2.38405	7.31061	2.1827	2.16108	4.31754
0.45	2.0142	59.7316	2.73348	3.86434	-1.30115	2.33875	7.01944	2.12464	2.1264	3.68615
0.5	1.57197	56.3437	3.12736	3.84579	-0.98855	2.29383	6.86692	2.05959	2.0833	3.17276
0.55	1.20782	53.0218	3.61636	3.87673	-0.72241	2.25152	6.82846	1.98707	2.03333	2.7478
0.6	0.90726	49.7821	4.23336	3.95122	-0.49355	2.21497	6.8935	1.90607	1.97747	2.39215
0.65	0.6604	46.6493	5.03031	4.06816	-0.2967	2.18902	7.06324	1.81488	1.91624	2.09355
0.7	0.46026	43.662	6.09316	4.23151	-0.12981	2.18152	7.35177	1.71088	1.8498	1.84478
0.75	0.30176	40.876	7.5738	4.45313	0.00636	2.20598	7.79187	1.59051	1.77822	1.64303
0.8	0.18097	38.3645	9.76805	4.76212	0.10966	2.28639	8.45097	1.44971	1.70195	1.48988
0.85	0.09442	36.205	13.34861	5.23526	0.1838	2.46639	9.4773	1.28533	1.6232	1.39187
0.9	0.03844	34.4428	20.30583	6.11046	0.26808	2.82825	11.26716	1.09783	1.54923	1.36156
0.95	0.00866	33.014	40.59259	8.43555	0.60299	3.55557	15.43419	0.89456	1.50206	1.42392

Tabla 40. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11 \pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=10.

)	$v = 11\pi/6 y$	a=0				
	Fpr	t =10	Кхх	Kyy	Kvy	Kwy	Cvv	Cxv	Cvx	CVV
S	3	φ		КЛУ	Кул	куу	C//	Слу	Cyx	Суу
0.004	0.95989	32.747	57.04564	9.4417	0.31925	4.54258	18.14702	0.5281	1.40924	1.80849
0.008	0.95137	32.9768	47.9446	9.23894	0.788	3.61798	16.71427	0.86394	1.4897	1.41451
0.01	0.94728	33.0881	44.57413	8.9999	0.82033	3.4357	16.14945	0.92433	1.5032	1.35012
0.013	0.94135	33.2509	40.44124	8.63759	0.80657	3.2668	15.42832	0.97536	1.51374	1.30188
0.02	0.92842	33.6114	33.57408	7.91045	0.69931	3.05939	14.14987	1.02693	1.52247	1.27117
0.05	0.88583	34.8873	20.90863	6.30073	0.38546	2.70802	11.44056	1.11432	1.54285	1.30426
0.1	0.8469	36.3412	14.53883	5.50249	0.30358	2.42477	9.82314	1.28627	1.61387	1.32243
0.2	0.7917	38.7791	10.43025	4.95177	0.21901	2.23888	8.66643	1.45493	1.69295	1.41209
0.3	0.75079	40.8395	8.30514	4.62312	0.10882	2.18211	8.02667	1.56699	1.75521	1.54361
0.4	0.71738	42.6599	7.05713	4.42192	0.0095	2.16316	7.64648	1.64961	1.80438	1.67407
0.5	0.68907	44.2974	6.23909	4.28936	-0.07832	2.1589	7.40174	1.71433	1.84434	1.79605
0.6	0.66387	45.8003	5.63451	4.18964	-0.1636	2.16295	7.22835	1.76729	1.87829	1.91683
0.7	0.64122	47.189	5.16622	4.11262	-0.24598	2.17123	7.1023	1.81222	1.9079	2.03563
0.8	0.62041	48.4856	4.78968	4.05152	-0.32629	2.18188	7.00979	1.851	1.93398	2.15316
0.9	0.60133	49.6971	4.47852	4.00262	-0.40471	2.19377	6.94192	1.88529	1.95742	2.26952
1	0.58346	50.8419	4.21786	3.96352	-0.48105	2.20615	6.89385	1.91561	1.97832	2.38427
1.2	0.55118	52.9441	3.79919	3.90692	-0.63043	2.23149	6.8405	1.96797	2.0148	2.6125
1.4	0.52237	54.8473	3.47892	3.87262	-0.77493	2.25608	6.83025	2.01145	2.04508	2.83778
1.6	0.49651	56.5779	3.2244	3.85495	-0.91602	2.27936	6.85123	2.04851	2.07069	3.06164
1.8	0.47294	58.1688	3.01731	3.85038	-1.05433	2.30111	6.89665	2.08042	2.0923	3.28449
2	0.45145	59.6321	2.84522	3.85659	-1.1905	2.3213	6.96155	2.10831	2.11072	3.50701
2.4	0.41334	62.2515	2.57652	3.89487	-1.45776	2.35716	7.13796	2.15448	2.13936	3.95178
2.5	0.40472	62.848	2.52125	3.90901	-1.52373	2.36525	7.19008	2.16441	2.14513	4.06309
2.8	0.38061	64.5244	2.37725	3.9606	-1.7199	2.38762	7.36267	2.19099	2.15941	4.39732
3	0.36592	65.5518	2.29586	4.00204	-1.85001	2.40112	7.49011	2.20648	2.16687	4.62153
3.5	0.33321	67.8534	2.13195	4.12589	-2.1714	2.43039	7.8433	2.23875	2.17919	5.18312
4	0.30533	69.8312	2.00844	4.27483	-2.49065	2.45448	8.2397	2.264	2.18439	5.75066
5	0.26058	73.0355	1.83979	4.62729	-3.11849	2.49062	9.12278	2.29975	2.17908	6.88996
7	0.19915	77.4855	1.66129	5.48844	-4.36526	2.5345	11.1558	2.33822	2.12842	9.21761
8	0.17817	79.0257	1.61115	5.97017	-4.98459	2.54792	12.25219	2.34941	2.09456	10.39641
10	0.14573	81.4116	1.54978	6.99612	-6.21993	2.56639	14.56136	2.36184	2.00714	12.77531
15	0.09951	84.8486	1.48839	9.63147	-9.15265	2.58806	20.39658	2.37268	1.75326	18.50922
30	0.05214	88.4219	1.45425	15.16587	-14.94768	2.6017	32.76566	2.37936	1.01479	29.98287

Tabla 41. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 63. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 64. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

)	$v = 11\pi/6$ y	a=0				
	fprt	=20	Kyy	Kuna	King	Kind	Com	C 177	Curr	Curre
З	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	28.2913	91.0831	1.61276	19.9647	-20.10436	2.69909	45.65416	2.19807	-1.20795	40.13393
0.1	14.0067	87.1402	1.63011	10.1743	-9.96451	2.67255	23.01623	2.20886	0.7987	20.01233
0.15	9.11297	83.3079	1.68453	7.04371	-6.49961	2.64406	15.6664	2.20607	1.42576	13.2314
0.2	6.57426	79.5708	1.7759	5.57454	-4.70883	2.61278	12.13632	2.19106	1.70744	9.79075
0.25	4.98455	75.9208	1.90545	4.76796	-3.59188	2.57865	10.13446	2.16488	1.84963	7.6904
0.3	3.87616	72.3546	2.0759	4.29167	-2.81543	2.54213	8.89884	2.12835	1.92058	6.26392
0.35	3.04942	68.8729	2.29173	4.00382	-2.23686	2.50411	8.10481	2.08203	1.94941	5.22603
0.4	2.40512	65.4804	2.55975	3.8341	-1.78517	2.46597	7.59213	2.02626	1.95065	4.43447
0.45	1.88859	62.1855	2.88995	3.74415	-1.42134	2.42959	7.2743	1.96113	1.93235	3.81065
0.5	1.4674	59.0015	3.29695	3.71184	-1.1225	2.39758	7.10251	1.88641	1.89934	3.30799
0.55	1.12117	55.9472	3.80225	3.72423	-0.8749	2.37357	7.04972	1.80155	1.85462	2.89765
0.6	0.8365	53.0485	4.43811	3.77441	-0.67036	2.36279	7.10337	1.70566	1.80019	2.56145
0.65	0.6042	50.3389	5.25445	3.86047	-0.50439	2.37298	7.26269	1.59767	1.73747	2.28823
0.7	0.41766	47.858	6.33254	3.98667	-0.37465	2.41579	7.53948	1.47661	1.66782	2.0719
0.75	0.27177	45.6477	7.81496	4.16797	-0.2788	2.50886	7.96381	1.34227	1.59314	1.91023
0.8	0.16214	43.7414	9.98213	4.44254	-0.20992	2.67887	8.60028	1.19622	1.51686	1.80409
0.85	0.08454	42.1494	13.48638	4.90606	-0.1454	2.96671	9.59519	1.04312	1.44545	1.75706
0.9	0.03461	40.8392	20.29901	5.82878	-0.0136	3.44026	11.34535	0.89227	1.39151	1.7762
0.95	0.00791	39.6942	40.36357	8.31253	0.47997	4.24516	15.46842	0.76193	1.38452	1.87924

Tabla 42. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=20.

				}	$v = 11\pi/6 y$	<i>a=0</i>				
	fprt	=20	Кхх	Kxv	Kvx	Kwy	Схх	Cxv	Cvx	Cvvv
S	3	φ		i kay	Кух	i kyy	CAA	CAY	Cyx	Cyy
0.004	0.9592	39.4901	56.57444	9.48607	0.36362	5.26493	18.16817	0.44761	1.28745	2.3218
0.008	0.94978	39.699	47.67482	9.17511	0.72416	4.2243	16.74588	0.75689	1.37708	1.83252
0.01	0.94528	39.7995	44.35023	8.90572	0.72615	4.02669	16.18591	0.80632	1.38839	1.7552
0.013	0.93877	39.9453	40.26508	8.50832	0.67731	3.8486	15.47182	0.84255	1.39347	1.69938
0.02	0.92472	40.2638	33.46901	7.72379	0.51265	3.63753	14.20873	0.86541	1.38724	1.66805
0.05	0.87979	41.3334	20.94328	6.02031	0.10504	3.24464	11.5421	0.89605	1.37018	1.69189
0.1	0.84083	42.4397	14.63933	5.23433	0.03541	2.83809	9.93625	1.07639	1.44858	1.6377
0.2	0.78238	44.4078	10.61466	4.68444	-0.04832	2.55905	8.81757	1.22686	1.5161	1.68445
0.3	0.73908	46.1011	8.51744	4.37344	-0.14087	2.4454	8.20115	1.33648	1.57396	1.78714
0.4	0.70532	47.6064	7.2701	4.19528	-0.21714	2.38579	7.83029	1.42813	1.62548	1.89265
0.5	0.67634	48.9951	6.44927	4.08098	-0.2867	2.35313	7.59376	1.50027	1.66655	1.99666
0.6	0.651	50.2866	5.83857	3.99694	-0.3563	2.33591	7.42587	1.56109	1.70186	2.10301
0.7	0.62799	51.5019	5.36461	3.93246	-0.42614	2.32801	7.30561	1.61227	1.73167	2.21067
0.8	0.60715	52.6466	4.98176	3.88214	-0.49567	2.32578	7.21766	1.65714	1.75791	2.31887
0.9	0.5879	53.7319	4.66494	3.84222	-0.56511	2.32732	7.15451	1.69656	1.78086	2.42762
1	0.57001	54.7637	4.39895	3.81079	-0.63378	2.33121	7.11091	1.7315	1.80094	2.53593
1.2	0.53769	56.6843	3.97094	3.76647	-0.77088	2.34352	7.06645	1.79162	1.83483	2.75401
1.4	0.50896	58.4423	3.64302	3.74144	-0.90611	2.35869	7.06529	1.84124	1.86141	2.97171
1.6	0.48312	60.0613	3.38238	3.73086	-1.04012	2.37498	7.09597	1.88307	1.88228	3.18984
1.8	0.45969	61.5583	3.17022	3.73186	-1.17285	2.39138	7.15136	1.91886	1.89845	3.40823
2	0.43827	62.9484	2.99409	3.74243	-1.30466	2.40742	7.22691	1.94978	1.91064	3.62727
2.4	0.40045	65.4506	2.71936	3.78701	-1.56562	2.43743	7.42582	2.00037	1.92521	4.0671
2.5	0.39185	66.0261	2.66301	3.8023	-1.63044	2.44444	7.48406	2.01106	1.92702	4.17754
2.8	0.36795	67.6431	2.51627	3.85673	-1.82377	2.4642	7.67537	2.03951	1.92894	4.50963
3	0.35343	68.6369	2.43345	3.89962	-1.95243	2.47638	7.81563	2.05596	1.92772	4.73275
3.5	0.32104	70.8773	2.26734	4.02581	-2.27148	2.50346	8.20344	2.08949	1.91624	5.29273
4	0.29361	72.8066	2.14264	4.17603	-2.58945	2.52636	8.63605	2.11528	1.89601	5.8595
5	0.24941	75.9632	1.97416	4.52878	-3.217	2.56204	9.59988	2.15004	1.83326	6.99915
7	0.18982	80.3279	1.79849	5.38773	-4.46597	2.60759	11.80708	2.18512	1.65567	9.32947
8	0.16942	81.8566	1.74994	5.86808	-5.08668	2.62215	12.99352	2.19468	1.55541	10.50971
10	0.13853	84.1877	1.69202	6.89102	-6.32504	2.64314	15.49198	2.20376	1.32723	12.89161
15	0.09521	87.5263	1.63496	9.5219	-9.26222	2.66889	21.78182	2.21086	0.72912	18.62963
30	-	-	-	-	-	-	-	-	-	-

Tabla 43. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 65. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma=11 \pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 66. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma=11 \pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

				Y	<i>ν= 11π/6 y</i>	a=0				
	fprt	=50	Кхх	Kwy	Kuy	Kun	Cvv	Cvv	Curr	Curr
3	S	φ		КЛУ	Кул	куу	C	Слу	Сул	Суу
0.05	23.0522	100.715	2.02367	19.47006	-20.599	3.24714	54.40177	1.64048	-11.30377	40.77746
0.1	11.6164	95.6907	2.01006	9.74587	-10.39294	3.1228	27.00807	1.69804	-3.54473	20.56814
0.15	7.65196	91.1423	2.04005	6.65916	-6.88416	3.03451	18.13139	1.7299	-1.15521	13.72997
0.2	5.5668	86.9433	2.11347	5.21818	-5.06519	2.96723	13.87258	1.7398	-0.06878	10.25239
0.25	4.24298	83.0214	2.23072	4.42814	-3.9317	2.91353	11.45515	1.73071	0.51324	8.12974
0.3	3.30849	79.3354	2.39354	3.95919	-3.14791	2.86999	9.95638	1.7049	0.85066	6.69234
0.35	2.60441	75.863	2.60534	3.67097	-2.56971	2.83569	8.98325	1.66413	1.05179	5.65306
0.4	2.05175	72.5948	2.87168	3.49414	-2.12513	2.81139	8.34149	1.60985	1.16934	4.86864
0.45	1.60697	69.5302	3.20092	3.39113	-1.77436	2.79926	7.92555	1.5433	1.23194	4.26003
0.5	1.24412	66.6745	3.60536	3.34069	-1.49365	2.80286	7.67485	1.46568	1.2566	3.78047
0.55	0.94674	64.0365	4.10309	3.33141	-1.26772	2.82713	7.55439	1.37838	1.25439	3.40094
0.6	0.7037	61.6263	4.72155	3.3591	-1.08567	2.87867	7.54578	1.2832	1.23325	3.10283
0.65	0.50701	59.4515	5.50425	3.42662	-0.93824	2.96591	7.64387	1.18255	1.19967	2.87393
0.7	0.35043	57.5146	6.52475	3.54593	-0.81539	3.09945	7.85741	1.07983	1.15973	2.70602
0.75	0.22882	55.8095	7.918	3.74342	-0.70335	3.29251	8.21501	0.9796	1.1199	2.59345
0.8	0.13762	54.3188	9.95939	4.07248	-0.57997	3.56208	8.78184	0.88799	1.08788	2.53236
0.85	0.0727	53.0105	13.30225	4.64741	-0.40405	3.93177	9.70703	0.81336	1.07383	2.52053
0.9	0.03032	51.8302	19.92828	5.76113	-0.08125	4.44054	11.39239	0.76861	1.09394	2.55848
0.95	0.0071	50.6641	39.80518	8.55249	0.71994	5.17788	15.4635	0.781	1.1843	2.65481

Tabla 44. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=50.

				ý	$v = 11\pi/6 y$	a=0				
	Fpr	t=50	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Сух	Суу
S	3	φ		iuty	N/X	,	CAR	CAY	Cyn	011
0.004	0.95835	50.4693	55.77064	10.00866	0.88621	6.12541	18.13979	0.583	1.09187	3.13604
0.008	0.94765	50.719	47.11311	9.44452	0.99358	5.04044	16.74265	0.79113	1.18067	2.543
0.01	0.94256	50.8376	43.83629	9.11434	0.93476	4.85258	16.1908	0.81328	1.18279	2.45929
0.013	0.93526	51.008	39.79587	8.65175	0.82073	4.6966	15.48726	0.81817	1.17158	2.4081
0.02	0.91965	51.3719	33.05726	7.76741	0.55628	4.53572	14.24528	0.78885	1.12663	2.40308
0.05	0.87177	52.4911	20.64824	5.8808	-0.03446	4.17554	11.63496	0.7206	1.01787	2.45083
0.1	0.83109	53.4868	14.47983	5.01222	-0.1867	3.63087	10.06381	0.8629	1.0869	2.29603
0.2	0.76601	55.3277	10.63401	4.34208	-0.39069	3.28627	9.04569	0.91541	1.07133	2.32763
0.3	0.72006	56.8184	8.6205	4.00169	-0.51261	3.09746	8.48799	0.99065	1.09364	2.39341
0.4	0.6827	58.155	7.43521	3.80842	-0.60401	2.98313	8.17287	1.05462	1.11331	2.47405
0.5	0.65198	59.3697	6.64834	3.69553	-0.67214	2.9027	7.97434	1.11656	1.13625	2.55108
0.6	0.62488	60.511	6.06266	3.61494	-0.7383	2.8482	7.84191	1.16955	1.15374	2.63643
0.7	0.60084	61.5876	5.60463	3.55666	-0.80194	2.80939	7.75119	1.21743	1.16866	2.72544
0.8	0.57886	62.6142	5.2346	3.51194	-0.86587	2.78223	7.69252	1.2591	1.17894	2.81881
0.9	0.5588	63.5936	4.92668	3.47802	-0.92931	2.76279	7.65596	1.29705	1.18678	2.91458
1	0.54024	64.5324	4.66745	3.45222	-0.99236	2.74908	7.63789	1.33107	1.1915	3.01189
1.2	0.50679	66.3022	4.24898	3.41761	-1.11973	2.73392	7.64294	1.38999	1.19331	3.21267
1.4	0.47723	67.9462	3.92731	3.4003	-1.24725	2.72911	7.69023	1.43879	1.18574	3.41781
1.6	0.45087	69.4787	3.67076	3.39588	-1.3751	2.73058	7.76842	1.48017	1.17078	3.62662
1.8	0.42696	70.9145	3.46221	3.40117	-1.50354	2.7362	7.87297	1.51477	1.14798	3.83862
2	0.40529	72.2603	3.28881	3.41495	-1.63214	2.74428	7.99776	1.54459	1.11938	4.05312
2.4	0.36714	74.7173	3.01934	3.46252	-1.89011	2.76481	8.30025	1.5916	1.04428	4.48871
2.5	0.35858	75.2865	2.96411	3.47813	-1.95462	2.77041	8.38484	1.60138	1.02247	4.59873
2.8	0.33473	76.8992	2.8211	3.53226	-2.14824	2.7878	8.65869	1.62635	0.94922	4.93113
3	0.32027	77.8999	2.74087	3.57422	-2.27783	2.79964	8.85631	1.64015	0.89481	5.15542
3.5	0.28851	80.1662	2.58049	3.69684	-2.60045	2.8286	9.39085	1.66736	0.74322	5.72004
4	0.26172	82.1451	2.46196	3.84152	-2.92396	2.85648	9.98081	1.6859	0.56928	6.29387
5	0.21933	85.4095	2.30542	4.18066	-3.56513	2.90687	11.28312	1.70604	0.16578	7.45083
7	0.16359	89.9967	2.14981	5.01115	-4.84254	2.98718	14.23513	1.71539	-0.7929	9.81733
8	0.14415	91.6658	2.11311	5.47558	-5.47918	3.02088	15.85637	1.71006	-1.35183	11.0174
10	0.1182	94.0715	2.05532	6.48679	-6.72926	3.06313	19.0135	1.71623	-2.3399	13.41591
15	0.08602	97.3162	1.95648	9.13671	-9.64741	3.08989	26.09231	1.76812	-4.07063	19.13589
30	-	-	-	-	-	-	-	-	-	-

Tabla 45. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 67. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 68. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

)	$v = 11\pi/6 y$	a=0				
	fprt	=100	Kvv	14	Kenn	K	Const	C	C	C
3	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	17.1627	126.258	1.72145	19.00294	-21.06612	5.78869	57.84022	1.42131	-45.55648	42.96079
0.1	8.86124	116.058	1.94121	9.16007	-10.97874	4.96387	30.27087	1.28052	-16.96282	22.28519
0.15	5.96834	108.287	2.08809	6.08046	-7.46286	4.45572	20.60656	1.25177	-8.46593	15.14219
0.2	4.4209	102.002	2.21622	4.67479	-5.60858	4.1336	15.74983	1.25191	-4.73448	11.465
0.25	3.4177	96.6935	2.35579	3.92149	-4.43835	3.9222	12.91003	1.25242	-2.77166	9.20964
0.3	2.69489	92.0767	2.52278	3.48433	-3.62277	3.78132	11.10769	1.24389	-1.62464	7.68348
0.35	2.14053	87.986	2.72702	3.22274	-3.01794	3.68957	9.9084	1.22402	-0.90822	6.58548
0.4	1.69905	84.3205	2.97666	3.06907	-2.55019	3.6358	9.09122	1.19323	-0.44111	5.76354
0.45	1.33974	81.0156	3.28069	2.98826	-2.17723	3.61466	8.53352	1.15323	-0.12805	5.13258
0.5	1.04408	78.0285	3.651	2.96206	-1.87228	3.6244	8.1637	1.10632	0.08554	4.64132
0.55	0.80009	75.3282	4.10499	2.98255	-1.61658	3.66553	7.93966	1.05533	0.23348	4.25697
0.6	0.59941	72.89	4.66961	3.04946	-1.39531	3.7402	7.83875	1.00343	0.33824	3.95751
0.65	0.43584	70.6918	5.38867	3.1699	-1.19496	3.85176	7.85351	0.95425	0.41592	3.72747
0.7	0.30449	68.7113	6.33741	3.36012	-1.00119	4.00461	7.99196	0.91191	0.47908	3.55548
0.75	0.20129	66.9241	7.65426	3.65051	-0.79626	4.20435	8.28315	0.88123	0.53846	3.43289
0.8	0.12276	65.3021	9.62031	4.09796	-0.5545	4.45843	8.79348	0.86823	0.60453	3.35292
0.85	0.06587	63.8096	12.89722	4.81981	-0.23165	4.77793	9.67399	0.88124	0.68936	3.3104
0.9	0.02795	62.3936	19.47913	6.11276	0.27038	5.18264	11.32934	0.93437	0.81121	3.30175
0.95	0.00668	60.9437	39.35702	9.12512	1.29256	5.72084	15.39115	1.06127	1.01099	3.32618

Tabla 46. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 11 \pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=100.

				2	$v = 11\pi/6 y$	a=0				
	fprt	=100	Кхх	Kxv	Kvx	Kvv	Схх	Сху	Cvx	Cvv
S	3	φ		i i i i i i i i i i i i i i i i i i i	Кух	i kyy	CAA	Слу	Cyx	Cyy
0.004	0.95785	60.714	55.23069	10.78893	1.66648	6.55453	18.0497	0.97283	0.92771	3.81541
0.008	0.94627	61.0528	46.67658	9.993	1.54206	5.53151	16.67454	1.05823	1.00413	3.17086
0.01	0.94079	61.2127	43.41263	9.61534	1.43577	5.37553	16.12692	1.05444	0.99387	3.09331
0.013	0.93295	61.4411	39.37817	9.1067	1.27569	5.26365	15.4274	1.03366	0.96258	3.06005
0.02	0.91631	61.9236	32.63416	8.15916	0.94803	5.1855	14.19129	0.96841	0.87201	3.10143
0.05	0.8665	63.3464	20.21489	6.13678	0.22151	4.94314	11.59818	0.82841	0.65425	3.21094
0.1	0.82256	64.6017	14.13467	5.11374	-0.08518	4.39714	10.07123	0.88079	0.66321	3.02997
0.2	0.75086	66.8958	10.37809	4.27215	-0.46061	4.12994	9.14751	0.81327	0.47237	3.13683
0.3	0.7019	68.6395	8.42392	3.85512	-0.65918	3.92783	8.65178	0.83331	0.40408	3.20181
0.4	0.66245	70.1772	7.28313	3.61334	-0.79909	3.79714	8.3903	0.85967	0.34904	3.27901
0.5	0.62902	71.5844	6.53855	3.46088	-0.9068	3.70555	8.2496	0.88619	0.29735	3.35834
0.6	0.59984	72.8976	5.9856	3.35211	-1.00113	3.64001	8.16926	0.9127	0.24704	3.4442
0.7	0.57362	74.143	5.55674	3.26988	-1.08871	3.59392	8.13207	0.93628	0.19256	3.53663
0.8	0.55002	75.3272	5.20944	3.20734	-1.17047	3.55995	8.12196	0.95951	0.13773	3.63198
0.9	0.52829	76.4652	4.92215	3.15727	-1.25005	3.53676	8.13564	0.97995	0.07761	3.73206
1	0.50831	77.559	4.68007	3.11814	-1.32643	3.52053	8.16583	0.99932	0.01511	3.83366
1.2	0.47239	79.6388	4.28971	3.06091	-1.47644	3.50554	8.26737	1.0331	-0.12255	4.04581
1.4	0.44087	81.5932	3.98928	3.02502	-1.62253	3.50624	8.4104	1.0616	-0.27619	4.26475
1.6	0.41278	83.4416	3.74986	3.0037	-1.76728	3.51834	8.58725	1.08506	-0.44807	4.4905
1.8	0.38756	85.1949	3.55434	2.99383	-1.91088	3.53839	8.79123	1.10461	-0.63755	4.72132
2	0.36474	86.8626	3.39164	2.993	-2.05409	3.56457	9.01927	1.12065	-0.84565	4.95697
2.4	0.32504	89.9669	3.13673	3.01334	-2.33929	3.62972	9.53588	1.14465	-1.31743	5.43953
2.5	0.31617	90.6986	3.08412	3.02238	-2.41036	3.64798	9.67605	1.14934	-1.44686	5.56217
2.8	0.29183	92.7947	2.94601	3.05814	-2.62236	3.70571	10.11733	1.16155	-1.86002	5.93318
3	0.27722	94.1149	2.8673	3.08852	-2.76353	3.74636	10.42875	1.16822	-2.1571	6.18407
3.5	0.24519	97.1733	2.70851	3.18171	-3.11558	3.85522	11.27071	1.17817	-2.9901	6.82069
4	0.21897	99.9105	2.58404	3.30225	-3.46323	3.96611	12.16528	1.18715	-3.91489	7.46538
5	0.17861	104.583	2.40468	3.60224	-4.14355	4.19004	14.09279	1.19932	-6.05939	8.76393
7	0.12884	111.496	2.17298	4.40371	-5.44998	4.58608	18.12827	1.23829	-11.0646	11.36668
8	0.11298	114.088	2.08939	4.87626	-6.0785	4.74752	20.11883	1.26594	-13.73347	12.65324
10	0.09107	118.056	1.95988	5.91274	-7.30331	4.99316	23.92381	1.32921	-19.00327	15.18582
15	0.07205	123.64	1.6875	8.81806	-9.96606	4.88223	28.70938	1.65184	-22.21664	20.68651
30	-	-	-	-	-	-	-	-	-	-

Tabla 47. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 69. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), fprt=100.

Figura 70. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma=11 \pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Coeficientes rotodinámicos para un punto de inyección para $\gamma = 5\pi/6$ y a =0.

					$\gamma = 5\pi/6 y d$	a=0				
	fpr	t=1	Kvv	Kan	King	King	Curr	Car	Curr	Curr
З	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу
0.05	32.4693	86.1153	1.30615	20.17957	-19.88948	2.5488	39.95593	2.56128	2.70728	39.88437
0.1	15.9603	82.4581	1.34891	10.36941	-9.7694	2.53746	20.33706	2.5517	2.61828	19.77949
0.15	10.3359	78.8091	1.41966	7.22633	-6.31699	2.51842	13.96346	2.53502	2.57369	13.00965
0.2	7.43784	75.1703	1.51956	5.75067	-4.5327	2.49203	10.90326	2.51153	2.53536	9.57558
0.25	5.636	71.5428	1.65056	4.94295	-3.41689	2.45879	9.17094	2.48164	2.49611	7.47787
0.3	4.3883	67.926	1.81562	4.47063	-2.63647	2.41933	8.10576	2.44591	2.454	6.05033
0.35	3.46336	64.3178	2.01908	4.19207	-2.04861	2.37439	7.4259	2.405	2.40862	5.00758
0.4	2.74613	60.714	2.26719	4.03755	-1.58172	2.32474	6.99222	2.35962	2.36011	4.20694
0.45	2.17312	57.1083	2.56893	3.96983	-1.19565	2.27119	6.7297	2.31054	2.30891	3.56905
0.5	1.70653	53.4916	2.93732	3.96858	-0.86576	2.21456	6.59635	2.25849	2.2555	3.04617
0.55	1.32245	49.8516	3.39169	4.02356	-0.57557	2.15563	6.5695	2.20421	2.20044	2.60769
0.6	1.00501	46.1717	3.96148	4.13181	-0.31296	2.09511	6.63978	2.14836	2.14422	2.23292
0.65	0.74323	42.4289	4.69354	4.29696	-0.0679	2.03366	6.80918	2.09157	2.08734	1.90721
0.7	0.52923	38.5913	5.66651	4.53066	0.16935	1.97187	7.09258	2.03435	2.03024	1.61959
0.75	0.35721	34.612	7.02261	4.85695	0.41018	1.91026	7.52404	1.97717	1.97331	1.36137
0.8	0.22271	30.4179	9.04695	5.32369	0.67124	1.84924	8.17368	1.92043	1.91689	1.12499
0.85	0.12228	25.885	12.40571	6.03451	0.98304	1.78919	9.19541	1.86445	1.86126	0.9028
0.9	0.05313	20.7683	19.09844	7.262	1.41962	1.73038	10.99646	1.80949	1.80665	0.68483
0.95	0.013	14.4275	39.12477	10.09813	2.26557	1.67306	15.21187	1.75574	1.75326	0.45081

Tabla 48. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=1.

					$\gamma = 5\pi/6 y d$	a=0				
	fpr	t=1	Кхх	Kxv	Kvx	Kvv	Cxx	Cxv	Сух	Cvv
S	3	φ		,		,,		0.19		-,,
0.004	0.9642	12.5151	54.99171	11.87648	2.75403	1.65756	17.86848	1.74252	1.73857	0.3728
0.008	0.95774	13.3894	46.43958	10.95394	2.50299	1.66446	16.4895	1.748	1.74519	0.40973
0.01	0.9546	13.8116	43.16372	10.57921	2.39964	1.66794	15.92988	1.75108	1.74846	0.42675
0.013	0.95001	14.4267	39.10717	10.09598	2.26497	1.67308	15.20867	1.75577	1.75328	0.45092
0.02	0.93978	15.7789	32.3082	9.22987	2.01873	1.68464	13.91751	1.7665	1.76408	0.50228
0.05	0.90321	20.3865	19.74373	7.37005	1.45479	1.72675	11.15611	1.80608	1.80328	0.67105
0.1	0.86261	24.7801	13.62299	6.27441	1.07549	1.77441	9.54494	1.85071	1.84754	0.84841
0.2	0.81323	28.9534	9.74664	5.47833	0.74556	1.83347	8.39351	1.90562	1.90229	1.06648
0.3	0.77094	32.8042	7.75222	5.02856	0.51426	1.88494	7.75978	1.9536	1.94991	1.26164
0.4	0.73632	35.7231	6.59011	4.75372	0.34129	1.92754	7.38467	1.99322	1.98928	1.43145
0.5	0.70765	37.9963	5.83381	4.57121	0.20354	1.96297	7.14453	2.02608	2.02201	1.58073
0.6	0.68219	39.9747	5.27475	4.43586	0.08262	1.99453	6.97384	2.05534	2.05117	1.72121
0.7	0.65924	41.7304	4.84171	4.33202	-0.02657	2.02298	6.84943	2.08167	2.07746	1.855
0.8	0.63824	43.3177	4.49297	4.25016	-0.12765	2.04897	6.75732	2.10572	2.10149	1.9842
0.9	0.61883	44.7733	4.20454	4.18463	-0.2227	2.07293	6.68923	2.12786	2.12366	2.10998
1	0.60087	46.1076	3.96252	4.13205	-0.31253	2.09499	6.64002	2.14825	2.1441	2.23236
1.2	0.56812	48.5249	3.57291	4.05479	-0.48255	2.13492	6.58293	2.1851	2.18115	2.47231
1.4	0.53907	50.6503	3.27396	4.0056	-0.64195	2.16986	6.567	2.21731	2.21367	2.70598
1.6	0.5129	52.5563	3.03575	3.97671	-0.79426	2.20084	6.58106	2.24584	2.2426	2.93612
1.8	0.48913	54.2796	2.84134	3.9635	-0.94121	2.22846	6.61829	2.27125	2.2685	3.16373
2	0.46737	55.8543	2.6794	3.96286	-1.08423	2.25325	6.67422	2.29403	2.29186	3.38996
2.4	0.42887	58.6331	2.42555	3.99122	-1.36141	2.29574	6.83022	2.33303	2.33219	3.83994
2.5	0.42014	59.2628	2.37319	4.00343	-1.42931	2.3051	6.8769	2.34161	2.34114	3.95223
2.8	0.3958	61.0168	2.23637	4.05028	-1.63021	2.33059	7.03215	2.36495	2.36566	4.28881
3	0.38088	62.0921	2.1588	4.08922	-1.76283	2.34574	7.14744	2.37881	2.38037	4.5142
3.5	0.34774	64.4811	2.00191	4.20847	-2.08881	2.37801	7.46843	2.40828	2.41206	5.07785
4	0.31928	66.5337	1.88294	4.35447	-2.41101	2.404	7.83047	2.43196	2.43814	5.64655
5	0.27362	69.8325	1.71897	4.70393	-3.04186	2.44208	8.64039	2.46651	2.47767	6.78679
7	0.21068	74.3952	1.54142	5.56448	-4.28922	2.48634	10.51019	2.50641	2.52786	9.11361
8	0.18831	76.0204	1.49082	6.04655	-4.90822	2.49951	11.52486	2.51819	2.54481	10.29198
10	0.15502	78.4445	1.42622	7.0746	-6.14146	2.51663	13.65312	2.5334	2.57006	12.66904
15	0.10825	81.8587	1.35709	9.71498	-9.06914	2.53502	19.02152	2.5493	2.60838	18.39946
30	0.06781	84.8241	1.31329	15.25564	-14.85791	2.54459	30.17432	2.55508	2.63825	29.87297

Tabla 49. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

Figura 71. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma=5\pi/6$, a=0, (L/D) = (1/4), fprt=1.

Figura 72. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma=5\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.
					$\gamma = 5\pi/6 \ y \ d$	<i>a=0</i>				
	fpr	t=5	Kvv				6	6	6	<u> </u>
З	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	33.4058	85.2008	1.38154	20.13845	-19.93061	2.57122	38.83738	2.63258	3.31739	39.84548
0.1	16.4427	81.5019	1.42909	10.32579	-9.81302	2.56118	19.7554	2.62613	2.93469	19.739
0.15	10.6573	77.8267	1.50287	7.18114	-6.36218	2.54295	13.56898	2.61123	2.7879	12.96827
0.2	7.67116	74.1796	1.60375	5.70498	-4.57839	2.51681	10.60909	2.58798	2.695	9.53409
0.25	5.81092	70.5621	1.73358	4.89786	-3.46198	2.48325	8.94233	2.5568	2.62025	7.43706
0.3	4.52048	66.973	1.89543	4.42722	-2.67988	2.44294	7.92492	2.51832	2.55237	6.01095
0.35	3.56273	63.4082	2.09395	4.15124	-2.08944	2.39665	7.28207	2.47342	2.48706	4.97026
0.4	2.81987	59.8604	2.3358	3.99999	-1.61927	2.34529	6.87799	2.4231	2.42264	4.17219
0.45	2.22685	56.3198	2.63046	3.93601	-1.22947	2.28978	6.63948	2.36842	2.3585	3.53724
0.5	1.74481	52.7739	2.99143	3.9387	-0.89564	2.23105	6.52567	2.31045	2.29453	3.01748
0.55	1.34901	49.2069	3.43842	3.99764	-0.6015	2.17	6.51467	2.25018	2.23085	2.58218
0.6	1.02286	45.5995	4.00121	4.10967	-0.3351	2.10744	6.59772	2.18852	2.16766	2.21054
0.65	0.75478	41.9266	4.72684	4.27833	-0.08653	2.04409	6.77734	2.12624	2.10517	1.8878
0.7	0.53636	38.1545	5.69406	4.51518	0.15386	1.98058	7.06884	2.06398	2.04359	1.60293
0.75	0.36134	34.2355	7.04514	4.84424	0.39747	1.91743	7.50666	2.00226	1.98312	1.34722
0.8	0.22491	30.0963	9.06517	5.31338	0.66092	1.85508	8.16129	1.94148	1.92391	1.11307
0.85	0.12329	25.6127	12.42027	6.02624	0.97478	1.79388	9.18691	1.88193	1.86609	0.89287
0.9	0.0535	20.5405	19.1099	7.25548	1.4131	1.7341	10.991	1.82384	1.80976	0.67666
0.95	0.01308	14.2407	39.13355	10.09312	2.26056	1.67592	15.20889	1.76729	1.75496	0.44422

Tabla 50. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=5.

				,	$\gamma = 5\pi/6 y a$	<i>a=0</i>				
	fpr	t=5	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Cvx	Cvv
S	3	φ		i i i i i i i i i i i i i i i i i i i	NyA	куу	CAA	CAY	Cyx	Cyy
0.004	0.96422	12.3379	55.00517	11.86867	2.74622	1.66208	17.86459	1.76054	1.74083	0.36235
0.008	0.9578	13.2009	46.44933	10.94834	2.49739	1.66769	16.48646	1.76094	1.74694	0.40229
0.01	0.95469	13.6178	43.17288	10.57396	2.39439	1.67095	15.92692	1.7632	1.75016	0.4198
0.013	0.95012	14.2251	39.11595	10.09097	2.25996	1.67594	15.20569	1.76732	1.75498	0.44433
0.02	0.93996	15.5609	32.31699	9.22488	2.01374	1.68748	13.91425	1.77794	1.76593	0.49578
0.05	0.90357	20.1188	19.7549	7.3637	1.44843	1.73037	11.15088	1.82011	1.80625	0.66306
0.1	0.86309	24.4758	13.63698	6.26642	1.0675	1.77897	9.53714	1.8677	1.852	0.8387
0.2	0.81427	28.5385	9.763	5.46918	0.73641	1.83858	8.38282	1.92472	1.90826	1.0558
0.3	0.77212	32.354	7.77247	5.01716	0.50286	1.89136	7.74499	1.9765	1.95824	1.24874
0.4	0.73779	35.2139	6.61379	4.74037	0.32795	1.93506	7.36591	2.01936	1.99986	1.41671
0.5	0.70938	37.4362	5.86034	4.55629	0.18862	1.97136	7.12215	2.05481	2.0346	1.56457
0.6	0.68421	39.3616	5.304	4.41944	0.0662	2.00375	6.94781	2.08648	2.06578	1.70372
0.7	0.66151	41.0712	4.87357	4.31417	-0.04442	2.03298	6.81971	2.1151	2.09411	1.83626
0.8	0.64079	42.6107	4.52733	4.23095	-0.14686	2.05972	6.72389	2.14131	2.12019	1.96429
0.9	0.62161	44.024	4.24133	4.16409	-0.24324	2.0844	6.65201	2.16554	2.14444	2.08894
1	0.60388	45.3182	4.00162	4.11025	-0.33433	2.10715	6.59901	2.18789	2.16696	2.21026
1.2	0.57159	47.657	3.61645	4.0306	-0.50675	2.14837	6.53418	2.22844	2.20824	2.44822
1.4	0.54297	49.7111	3.32157	3.97921	-0.66834	2.18449	6.51043	2.264	2.24502	2.6801
1.6	0.51714	51.5554	3.08716	3.94829	-0.82269	2.21655	6.51654	2.29562	2.27827	2.90859
1.8	0.49372	53.22	2.89621	3.93323	-0.97148	2.24516	6.54581	2.32382	2.30849	3.13472
2	0.47224	54.745	2.73747	3.93088	-1.11621	2.27086	6.59368	2.34917	2.33621	3.3596
2.4	0.43423	57.4369	2.48919	3.95629	-1.39634	2.3149	6.73359	2.39258	2.38522	3.80725
2.5	0.42559	58.0489	2.43807	3.96785	-1.46489	2.3246	6.77624	2.40214	2.39634	3.91903
2.8	0.40151	59.7538	2.30458	4.01295	-1.66755	2.35102	6.91952	2.42811	2.4273	4.25424
3	0.38672	60.8019	2.22898	4.05084	-1.80121	2.36671	7.0268	2.44353	2.44631	4.47881
3.5	0.35377	63.1403	2.07617	4.16796	-2.12932	2.4001	7.32808	2.47622	2.4886	5.04078
4	0.32541	65.1587	1.9603	4.31234	-2.45314	2.42694	7.67067	2.50238	2.52514	5.6082
5	0.27963	68.4318	1.80017	4.6598	-3.08599	2.46605	8.44327	2.54007	2.58476	6.74681
7	0.2161	73.0127	1.62529	5.51895	-4.33475	2.51104	10.24229	2.58244	2.67321	9.07234
8	0.19319	74.6754	1.57497	6.00087	-4.95389	2.52429	11.222	2.59465	2.70911	10.25048
10	0.15956	77.1308	1.50939	7.02943	-6.18662	2.54114	13.28673	2.60939	2.76892	12.62778
15	0.11172	80.648	1.43618	9.67195	-9.11217	2.55841	18.51486	2.62245	2.88386	18.35967
30	0.07185	83.6225	1.37274	15.2232	-14.89035	2.56229	29.57629	2.61081	2.96431	29.84256

Tabla 51. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 73. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma=5\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 74. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma=5\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

					$\gamma = 5\pi/6 \ y \ d$	a=0				
	fprt	=10	Kyy				6	6	6	<u> </u>
з	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу
0.05	34.5822	84.1326	1.47272	20.09269	-19.97637	2.59408	37.50684	2.71739	3.98449	39.80296
0.1	17.0456	80.3938	1.52523	10.27785	-9.86096	2.58496	19.06866	2.71401	3.27678	19.69522
0.15	11.0567	76.6969	1.60179	7.13202	-6.4113	2.56721	13.10651	2.70056	3.01737	12.92395
0.2	7.95947	73.0471	1.70305	5.65573	-4.62764	2.5411	10.26631	2.67707	2.86489	9.48993
0.25	6.0259	69.4461	1.83084	4.84954	-3.51029	2.50712	8.67717	2.64397	2.7519	7.39378
0.3	4.68217	65.8911	1.98847	4.38079	-2.72631	2.46598	7.71576	2.60207	2.65668	5.96917
0.35	3.68385	62.3755	2.18098	4.10751	-2.13317	2.41851	7.11586	2.55249	2.57054	4.93055
0.4	2.90954	58.8893	2.41552	3.95959	-1.65968	2.36568	6.74584	2.49653	2.4896	4.13498
0.45	2.29212	55.4192	2.70208	3.89935	-1.26614	2.30848	6.53481	2.43558	2.41208	3.50286
0.5	1.79131	51.9495	3.05462	3.906	-0.92834	2.24793	6.4433	2.371	2.33716	2.98615
0.55	1.3813	48.4614	3.49326	3.96893	-0.6302	2.18499	6.45042	2.30405	2.26448	2.55399
0.6	1.04461	44.9329	4.0481	4.08485	-0.35992	2.12055	6.54814	2.23587	2.1939	2.18548
0.65	0.76889	41.3366	4.76638	4.25717	-0.10769	2.05539	6.73955	2.1674	2.12538	1.86578
0.7	0.5451	37.6375	5.727	4.49739	0.13607	1.99018	7.04047	2.09938	2.05892	1.5838
0.75	0.36642	33.7866	7.07224	4.82946	0.38269	1.92548	7.48577	2.03242	1.99451	1.33077
0.8	0.22761	29.71	9.08723	5.30125	0.64879	1.86175	8.1463	1.96693	1.93215	1.09908
0.85	0.12455	25.2835	12.43799	6.01642	0.96496	1.79932	9.17655	1.9032	1.87182	0.88109
0.9	0.05396	20.2634	19.12392	7.24766	1.40528	1.73846	10.98432	1.84139	1.81348	0.66687
0.95	0.01317	14.012	39.14435	10.08706	2.2545	1.67932	15.20523	1.78147	1.75702	0.43626

Tabla 52. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=10.

				,	$\gamma = 5\pi/6 y d$	<i>a=0</i>				
	fprt	=10	Кхх	Kyy	Kvy	KWW	Cvv	Cxv	Cvx	CVV
S	3	φ		ix y	КуХ	куу	C//	Слу	Cyx	Суу
0.004	0.96424	12.1204	55.02192	11.85911	2.73666	1.66754	17.85976	1.78293	1.74359	0.34957
0.008	0.95788	12.97	46.46139	10.94151	2.49057	1.67154	16.48269	1.77693	1.74907	0.39325
0.01	0.95478	13.3805	43.1842	10.56758	2.38801	1.67455	15.92326	1.77816	1.75222	0.41137
0.013	0.95025	13.9787	39.12678	10.08489	2.25388	1.67936	15.20204	1.78154	1.75704	0.43634
0.02	0.94017	15.2949	32.32777	9.21886	2.00772	1.69084	13.91027	1.79195	1.76816	0.48796
0.05	0.90401	19.7934	19.76849	7.35612	1.44086	1.73459	11.14455	1.8372	1.80978	0.65354
0.1	0.86368	24.1079	13.65399	6.25693	1.05801	1.78426	9.5277	1.88835	1.85727	0.82719
0.2	0.81549	28.0455	9.78256	5.45856	0.72579	1.84435	8.37015	1.94757	1.91514	1.0434
0.3	0.77352	31.8197	7.79663	5.00398	0.48968	1.89855	7.72746	2.00387	1.9678	1.23381
0.4	0.73955	34.6114	6.64186	4.7251	0.31267	1.94337	7.34384	2.0504	2.01187	1.39981
0.5	0.71144	36.7771	5.89164	4.53934	0.17167	1.98053	7.09597	2.08876	2.04878	1.54619
0.6	0.68661	38.6432	5.3383	4.40095	0.04772	2.0137	6.91757	2.12309	2.08207	1.68399
0.7	0.66419	40.3022	4.91078	4.29421	-0.06439	2.04367	6.78536	2.15426	2.11252	1.81526
0.8	0.64379	41.789	4.56728	4.20961	-0.1682	2.0711	6.68548	2.18281	2.14069	1.94212
0.9	0.62487	43.1566	4.28397	4.1414	-0.26592	2.09644	6.60944	2.20933	2.16708	2.06564
1	0.60739	44.4073	4.04681	4.0863	-0.35827	2.11981	6.55231	2.23381	2.19169	2.18592
1.2	0.57563	46.661	3.66645	4.00428	-0.53306	2.16218	6.47913	2.27836	2.23719	2.42195
1.4	0.54748	48.6379	3.37599	3.95076	-0.69679	2.19933	6.44702	2.31752	2.27814	2.65212
1.6	0.52205	50.4156	3.14573	3.91784	-0.85314	2.23234	6.44462	2.35249	2.31562	2.87903
1.8	0.49904	52.0165	2.95855	3.90099	-1.00372	2.26178	6.46546	2.38368	2.34999	3.10377
2	0.47787	53.4871	2.80336	3.89697	-1.15012	2.28825	6.50476	2.41183	2.38191	3.32734
2.4	0.44043	56.0833	2.56127	3.91949	-1.43314	2.33361	6.62765	2.46008	2.43921	3.77279
2.5	0.43189	56.6754	2.51156	3.9304	-1.50234	2.34361	6.66601	2.47074	2.45241	3.88407
2.8	0.40808	58.3279	2.38192	3.97372	-1.70678	2.37083	6.7965	2.49969	2.48957	4.21793
3	0.3935	59.3417	2.30859	4.01058	-1.84147	2.38699	6.89537	2.51686	2.51264	4.44173
3.5	0.36079	61.6212	2.16071	4.12545	-2.17184	2.42138	7.17547	2.55334	2.56515	5.002
4	0.33261	63.5946	2.0487	4.26807	-2.49741	2.44899	7.49721	2.58249	2.61174	5.5681
5	0.28675	66.8292	1.89388	4.61312	-3.13266	2.48917	8.22897	2.62432	2.69111	6.70487
7	0.2226	71.4152	1.72366	5.47014	-4.38356	2.53512	9.94966	2.67054	2.81775	9.02865
8	0.19917	73.1078	1.67438	5.95156	-5.0032	2.54861	10.88957	2.68378	2.87324	10.20631
10	0.16496	75.6063	1.60831	6.98032	-6.23574	2.56539	12.88435	2.6984	2.9677	12.58363
15	0.11569	79.2468	1.53131	9.62453	-9.15958	2.58192	17.95405	2.70892	3.16198	18.31661
30	0.07556	82.2924	1.44306	15.18791	-14.92564	2.57991	28.94338	2.67554	3.27968	29.81011

*T*abla 53. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 75. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), fprt=10.

Figura 76. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

					$\gamma = 5\pi/6 \ y \ d$	<i>a=0</i>				
	fprt	=20	Kvv	Kenne	Kenne	K	Gun	Const	C	Grad
З	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу
0.05	36.9513	82.2141	1.64437	20.01729	-20.05177	2.62651	35.05832	2.87346	5.05632	39.73464
0.1	18.2508	78.4259	1.70391	10.20027	-9.93855	2.61788	17.81828	2.87402	3.81798	19.62597
0.15	11.8487	74.7096	1.78342	7.05366	-6.48965	2.60019	12.27243	2.86168	3.37611	12.85465
0.2	8.52677	71.0704	1.88344	5.57801	-4.70536	2.57376	9.65286	2.8365	3.12851	9.42142
0.25	6.44584	67.5078	2.00607	4.77374	-3.5861	2.53914	8.20517	2.79914	2.95567	7.32679
0.3	4.99603	64.016	2.15518	4.30802	-2.79908	2.49704	7.3445	2.75073	2.81851	5.90438
0.35	3.9178	60.5847	2.33652	4.03869	-2.20199	2.44835	6.82087	2.69283	2.70091	4.86853
0.4	3.08218	57.1995	2.55804	3.89546	-1.7238	2.39403	6.51075	2.62717	2.5953	4.07625
0.45	2.41756	53.843	2.83048	3.84045	-1.32504	2.3351	6.34774	2.5556	2.49784	3.44783
0.5	1.88067	50.4953	3.16851	3.85267	-0.98167	2.27261	6.29516	2.4799	2.40651	2.93517
0.55	1.44342	47.134	3.59282	3.92132	-0.67781	2.20755	6.33396	2.40171	2.32016	2.50729
0.6	1.08653	43.7335	4.13393	4.04293	-0.40184	2.14087	6.45746	2.32247	2.23818	2.1432
0.65	0.79617	40.2636	4.83944	4.22077	-0.14409	2.07343	6.66979	2.24337	2.16014	1.82793
0.7	0.56205	36.6866	5.78843	4.46619	0.10488	2.00595	6.9876	2.16537	2.08576	1.5503
0.75	0.37632	32.9518	7.1233	4.80308	0.35631	1.93907	7.44647	2.08917	2.01482	1.30145
0.8	0.23291	28.9841	9.12915	5.27924	0.62679	1.87327	8.11783	2.01526	1.94709	1.07371
0.85	0.12703	24.6588	12.47198	5.99832	0.94686	1.80894	9.15673	1.94393	1.88238	0.85941
0.9	0.05486	19.7325	19.15103	7.23304	1.39066	1.74634	10.97144	1.87526	1.82044	0.6486
0.95	0.01335	13.5701	39.1654	10.07557	2.24301	1.68559	15.19811	1.80907	1.76091	0.42119

Tabla 54. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=20.

					$\gamma = 5\pi/6 y d$	<i>a=0</i>				
	fprt	=20	Кхх	Kxv	Kvx	Kvv	Схх	Сху	Сух	Cvv
S	3	φ		ЮЛУ	Кух	,,	CAN	CXY	Cyx	0,,
0.004	0.96428	11.6991	55.05516	11.84061	2.71816	1.67783	17.8502	1.82727	1.74891	0.32489
0.008	0.95802	12.5236	46.48513	10.92843	2.47748	1.67875	16.47532	1.80835	1.75313	0.37593
0.01	0.95498	12.9221	43.20641	10.55538	2.37581	1.68124	15.91613	1.80745	1.75614	0.39529
0.013	0.95052	13.5032	39.14792	10.07334	2.24233	1.68566	15.19493	1.80929	1.76092	0.42118
0.02	0.94058	14.7828	32.3487	9.20751	1.99637	1.69699	13.9026	1.81912	1.77232	0.47322
0.05	0.90485	19.1709	19.79456	7.34207	1.4268	1.74216	11.13252	1.86994	1.81626	0.6359
0.1	0.86481	23.409	13.6865	6.23945	1.04054	1.79365	9.5098	1.92781	1.86689	0.80597
0.2	0.81774	27.134	9.81907	5.43963	0.70686	1.85414	8.34675	1.99028	1.92727	1.02125
0.3	0.77612	30.8325	7.84162	4.98063	0.46633	1.91064	7.69518	2.05493	1.98454	1.2073
0.4	0.74282	33.503	6.69359	4.69845	0.28603	1.95705	7.30369	2.10776	2.03253	1.37027
0.5	0.71525	35.5734	5.94891	4.51012	0.14245	1.99538	7.04873	2.15109	2.07286	1.51438
0.6	0.69103	37.34	5.40057	4.36948	0.01624	2.02954	6.86354	2.18979	2.10936	1.65026
0.7	0.66911	38.9157	4.97794	4.26054	-0.09806	2.06047	6.72443	2.2252	2.14304	1.77968
0.8	0.64926	40.3155	4.63889	4.174	-0.20381	2.08871	6.6179	2.25753	2.17426	1.90495
0.9	0.63081	41.6079	4.36002	4.10385	-0.30347	2.11486	6.53502	2.28781	2.20376	2.02688
1	0.61377	42.7885	4.12705	4.04696	-0.39762	2.13897	6.47113	2.31578	2.23143	2.14571
1.2	0.58291	44.9034	3.75448	3.96169	-0.57566	2.18263	6.38459	2.36671	2.28284	2.37917
1.4	0.55554	46.7604	3.47123	3.90521	-0.74234	2.22091	6.33913	2.41169	2.3296	2.60705
1.6	0.53085	48.4255	3.24765	3.86961	-0.90136	2.25491	6.32341	2.45196	2.37278	2.83193
1.8	0.50846	49.9291	3.06667	3.85032	-1.05439	2.28525	6.33093	2.48803	2.41279	3.05483
2	0.48792	51.3051	2.91719	3.84409	-1.203	2.3125	6.35704	2.52061	2.45021	3.27678
2.4	0.45147	53.7444	2.68537	3.86271	-1.48992	2.3592	6.45356	2.57672	2.51837	3.7194
2.5	0.44315	54.302	2.63802	3.87273	-1.56001	2.3695	6.48529	2.58918	2.53428	3.83004
2.8	0.41985	55.8653	2.51504	3.91356	-1.76694	2.39756	6.59584	2.62316	2.57957	4.16212
3	0.40559	56.8233	2.44565	3.94896	-1.90309	2.4142	6.68167	2.64328	2.6079	4.38489
3.5	0.37345	58.9929	2.30664	4.06057	-2.23671	2.44965	6.92884	2.68639	2.67368	4.94287
4	0.34566	60.8802	2.20183	4.20059	-2.56489	2.47811	7.21821	2.72086	2.73324	5.50715
5	0.29984	64.027	2.05814	4.54154	-3.20424	2.51966	7.8846	2.77099	2.839	6.64103
7	0.23482	68.5834	1.8999	5.39406	-4.45963	2.56716	9.47783	2.82634	3.01773	8.96156
8	0.21116	70.2719	1.85292	5.87463	-5.08013	2.58094	10.35906	2.84137	3.09724	10.13859
10	0.17514	72.8777	1.78976	6.90206	-6.31399	2.59832	12.22866	2.85866	3.24474	12.51473
15	0.12291	76.738	1.71009	9.54693	-9.23719	2.61484	17.0173	2.86794	3.56058	18.24782
30	0.08004	80.0584	1.5797	15.12765	-14.9859	2.60596	27.81923	2.79856	3.76681	29.75604

Tabla 55. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 77. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 78. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

					$\gamma = 5\pi/6 \ y \ d$	<i>u=0</i>				
	fprt	=50	Kyy	Kenne	Kenne	K	Gun	C	C	Grad
З	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу
0.05	44.1507	77.7644	2.0756	19.88129	-20.18777	2.66379	29.14357	3.25048	6.89548	39.61741
0.1	21.86	73.9492	2.14173	10.06498	-10.07383	2.65366	14.85602	3.25308	4.72136	19.51037
0.15	14.1855	70.2574	2.21902	6.92036	-6.62296	2.6348	10.32704	3.23748	3.9647	12.74095
0.2	10.1765	66.6884	2.30883	5.44759	-4.83578	2.60767	8.23772	3.2043	3.55836	9.3097
0.25	7.65121	63.2352	2.41452	4.64689	-3.71295	2.57281	7.12306	3.15488	3.28938	7.21708
0.3	5.88692	59.8858	2.54137	4.18531	-2.92179	2.53086	6.49447	3.0911	3.08726	5.79676
0.35	4.57598	56.6243	2.69654	3.9207	-2.31998	2.48253	6.14332	3.01515	2.92226	4.76323
0.4	3.56469	53.4316	2.88928	3.7828	-1.83647	2.4286	5.96682	2.92943	2.77996	3.97363
0.45	2.76677	50.2861	3.13147	3.73378	-1.43171	2.36988	5.91021	2.83632	2.65275	3.34844
0.5	2.12903	47.1639	3.43877	3.75266	-1.08168	2.30726	5.94385	2.73815	2.53645	2.83965
0.55	1.61621	44.0389	3.83268	3.82859	-0.77054	2.24162	6.05329	2.63705	2.42865	2.41633
0.6	1.20348	40.8817	4.3444	3.95801	-0.48676	2.17385	6.235	2.5349	2.32794	2.05748
0.65	0.87261	37.6582	5.02205	4.144	-0.22087	2.10479	6.49538	2.43332	2.23347	1.74807
0.7	0.60981	34.3273	5.94508	4.39773	0.03641	2.03525	6.85281	2.33359	2.14466	1.47679
0.75	0.40441	30.8348	7.25614	4.7429	0.29613	1.96592	7.34428	2.2367	2.0611	1.23463
0.8	0.24805	27.103	9.24046	5.22712	0.57467	1.89741	8.04238	2.14333	1.98241	1.01375
0.85	0.13415	23.0053	12.564	5.95391	0.90245	1.8302	9.10321	2.05388	1.9082	0.80635
0.9	0.05748	18.2985	19.22583	7.19593	1.35355	1.76464	10.93601	1.96839	1.838	0.60241
0.95	0.01389	12.352	39.22459	10.04544	2.21288	1.70087	15.17817	1.88632	1.77106	0.38188

Tabla 56. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=50.

				,	$\gamma = 5\pi/6 y$	a=0				
	Fpr	t=50	Кхх	Kyy	Kvy	KWW	Cvv	Cxv	CVX	CVV
S	3	φ		ix y	Кух	куу	C//	CAY	Cyx	Cyy
0.004	0.96439	10.5298	55.15299	11.78952	2.66707	1.70444	17.82225	1.95716	1.7635	0.25707
0.008	0.95842	11.2906	46.55361	10.89309	2.44215	1.69693	16.45429	1.89862	1.76398	0.32936
0.01	0.95551	11.659	43.26998	10.52274	2.34317	1.69794	15.89598	1.89097	1.76648	0.35241
0.013	0.95124	12.1966	39.20785	10.04276	2.21175	1.70121	15.17509	1.88766	1.77104	0.3812
0.02	0.94171	13.3836	32.407	9.17808	1.96694	1.71178	13.88158	1.89462	1.78292	0.43512
0.05	0.90718	17.4938	19.86505	7.30711	1.39184	1.7594	11.10066	1.95838	1.83204	0.59203
0.1	0.8679	21.5523	13.77388	6.19659	0.99767	1.81453	9.46262	2.03395	1.89	0.7539
0.2	0.82332	24.8524	9.9131	5.39592	0.66316	1.87424	8.28797	2.10073	1.95452	0.9699
0.3	0.78275	28.3563	7.95637	4.92774	0.41344	1.9347	7.6149	2.18585	2.02145	1.14693
0.4	0.75146	30.7142	6.82148	4.64077	0.22834	1.98264	7.20736	2.25066	2.07583	1.30576
0.5	0.72493	32.6181	6.08929	4.44786	0.08019	2.02247	6.9365	2.30522	2.12244	1.44595
0.6	0.70209	34.1864	5.55083	4.30403	-0.04921	2.05741	6.73755	2.35242	2.16397	1.57934
0.7	0.68135	35.5895	5.13796	4.19196	-0.16664	2.08911	6.58452	2.39618	2.20267	1.70629
0.8	0.66257	36.8361	4.80795	4.10262	-0.27519	2.11798	6.46452	2.43613	2.2386	1.82942
0.9	0.64538	37.961	4.53708	4.03023	-0.37709	2.1445	6.36908	2.47298	2.27225	1.94972
1	0.6293	39.0059	4.31231	3.97095	-0.47362	2.16906	6.29213	2.50772	2.30424	2.06679
1.2	0.60047	40.852	3.95413	3.88186	-0.65548	2.21321	6.18116	2.57022	2.3633	2.29759
1.4	0.57474	42.4844	3.6847	3.82178	-0.82578	2.25194	6.11108	2.6262	2.41757	2.52296
1.6	0.55176	43.9288	3.47317	3.78334	-0.98764	2.2861	6.07228	2.67582	2.46734	2.74601
1.8	0.53074	45.2458	3.30398	3.76125	-1.14346	2.31662	6.05629	2.72097	2.51396	2.96709
2	0.51154	46.4447	3.16519	3.75264	-1.29445	2.34393	6.05975	2.76164	2.55746	3.18758
2.4	0.47733	48.5789	2.95307	3.767	-1.58563	2.39068	6.11142	2.83245	2.63726	3.62764
2.5	0.46953	49.0662	2.91024	3.77609	-1.65665	2.40097	6.1322	2.84822	2.6559	3.73775
2.8	0.44767	50.4324	2.79987	3.8144	-1.8661	2.42892	6.21058	2.89134	2.70897	4.06843
3	0.43411	51.2822	2.73882	3.84804	-2.00401	2.44558	6.27418	2.91752	2.74275	4.29019
3.5	0.40363	53.202	2.61803	3.95603	-2.34126	2.48095	6.46808	2.97359	2.82097	4.84622
4	0.37689	54.9003	2.52989	4.09259	-2.67289	2.50946	6.70317	3.01985	2.89319	5.40859
5	0.33222	57.7748	2.41361	4.42785	-3.31794	2.55118	7.26254	3.08904	3.02338	6.53942
7	0.26687	62.0964	2.29245	5.27221	-4.58149	2.59938	8.64463	3.1698	3.25059	8.85556
8	0.24193	63.7867	2.25934	5.74927	-5.2055	2.61379	9.41273	3.19467	3.35791	10.03044
10	0.20303	66.4777	2.21409	6.77184	-6.44422	2.63224	11.05808	3.22484	3.56212	12.40351
15	0.14301	70.7728	2.15492	9.40929	-9.37483	2.65144	15.24257	3.25071	4.04883	18.13092
30	0.08501	75.2102	1.99252	14.99213	-15.12143	2.64631	24.65667	3.15827	4.77091	29.63912

Tabla 57. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 79. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 80. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma=5\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

				,	$\gamma = 5\pi/6 \ y \ d$	<i>a=0</i>				
	fprt	=100	Kxx	Kau	Kung	King	Cviv	Car	Curr	Curr
3	S	φ	1000	КХУ	КУХ	куу	CXX	Сху	Сух	Суу
0.05	56.3247	72.981	2.57543	19.80574	-20.26332	2.65745	22.5514	3.67068	7.82662	39.55806
0.1	27.8566	69.2252	2.6352	9.9936	-10.14521	2.64569	11.61835	3.66739	5.16249	19.45392
0.15	18.0024	65.6155	2.69986	6.8518	-6.69152	2.62636	8.22743	3.64306	4.25005	12.68583
0.2	12.8289	62.1454	2.77216	5.38042	-4.90294	2.59984	6.71935	3.59892	3.77098	9.25444
0.25	9.5615	58.8042	2.8567	4.57985	-3.77998	2.56655	5.96147	3.53675	3.46165	7.16045
0.3	7.28122	55.5783	2.95971	4.11745	-2.98965	2.52695	5.57649	3.45867	3.23443	5.73784
0.35	5.59529	52.4511	3.08915	3.85146	-2.38922	2.48158	5.40362	3.36705	3.05214	4.70144
0.4	4.30575	49.4039	3.25486	3.71203	-1.90724	2.43099	5.36405	3.26438	2.89664	3.90879
0.45	3.29981	46.4155	3.4692	3.66172	-1.50376	2.3758	5.41635	3.15317	2.75835	3.2807
0.5	2.50671	43.4626	3.74824	3.67991	-1.15443	2.31667	5.53884	3.03587	2.63194	2.76945
0.55	1.87858	40.519	4.11385	3.75599	-0.84314	2.25427	5.72206	2.91478	2.51441	2.34442
0.6	1.38119	37.5549	4.59758	3.88655	-0.55822	2.18931	5.96577	2.79199	2.4041	1.98476
0.65	0.98911	34.5355	5.24787	4.07473	-0.29013	2.1225	6.27863	2.66936	2.30004	1.67557
0.7	0.68296	31.4181	6.14449	4.33169	-0.02963	2.05453	6.68067	2.54842	2.20172	1.40559
0.75	0.44771	28.147	7.43034	4.681	0.23423	1.98607	7.21009	2.43042	2.10879	1.16578
0.8	0.27158	24.6426	9.39086	5.17014	0.51768	1.91773	7.94051	2.31629	2.021	0.94824
0.85	0.14533	20.7768	12.69211	5.90245	0.85099	1.85003	9.02889	2.20657	1.93804	0.74506
0.9	0.06164	16.3064	19.33313	7.15045	1.30807	1.78338	10.88543	2.10136	1.85942	0.5461
0.95	0.01474	10.6059	39.31214	10.0064	2.17385	1.71795	15.14887	1.99979	1.7841	0.33133

Tabla 58. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 5\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=100.

					$\gamma = 5\pi/6 y c$	<i>a=0</i>				
	Fprt	=100	Кхх	Kyy	Kux	Kw	Cvv	Cwy	Curr	<u>C</u> w
S	3	φ	1000	КЛУ	КУХ	куу	C	Слу	Cyx	Суу
0.004	0.96457	8.83651	55.31051	11.71633	2.59388	1.73798	17.77777	2.16483	1.78414	0.16065
0.008	0.95899	9.5179	46.6602	10.84439	2.39344	1.71885	16.42214	2.03827	1.77864	0.26559
0.01	0.95627	9.84848	43.36759	10.47846	2.29889	1.71771	15.86566	2.01848	1.7802	0.2946
0.013	0.95228	10.3319	39.29829	10.00212	2.17111	1.71916	15.14586	2.00532	1.78413	0.32836
0.02	0.94333	11.4033	32.49238	9.1404	1.92926	1.72809	13.85171	2.00475	1.79605	0.38654
0.05	0.91054	15.1683	19.96275	7.26567	1.3504	1.77648	11.05815	2.08094	1.84996	0.54005
0.1	0.87236	19.024	13.89392	6.1469	0.94799	1.83437	9.40004	2.18014	1.91573	0.69337
0.2	0.83013	22.0051	10.03785	5.348	0.61523	1.89174	8.2129	2.24832	1.9831	0.91311
0.3	0.79136	25.234	8.10397	4.87272	0.35841	1.95391	7.51583	2.35608	2.05796	1.0833
0.4	0.76365	27.1195	6.97274	4.58793	0.1755	1.99926	7.09989	2.42269	2.11263	1.24534
0.5	0.73803	28.9286	6.25534	4.39113	0.02346	2.03975	6.81114	2.49106	2.16439	1.38207
0.6	0.71697	30.2873	5.72368	4.24719	-0.10605	2.07364	6.60152	2.54372	2.20757	1.51593
0.7	0.69682	31.621	5.32335	4.13216	-0.22644	2.10571	6.43209	2.59885	2.25054	1.64035
0.8	0.67921	32.7343	5.00133	4.04195	-0.33586	2.13401	6.30011	2.64551	2.28864	1.76307
0.9	0.66317	33.7299	4.73728	3.96909	-0.43824	2.15986	6.19385	2.68794	2.32394	1.88333
1	0.64842	34.6323	4.51778	3.90998	-0.53459	2.1835	6.10785	2.72676	2.35676	2.00094
1.2	0.62149	36.269	4.17187	3.82022	-0.71713	2.22642	5.97667	2.79916	2.41834	2.23176
1.4	0.59787	37.6826	3.91151	3.7606	-0.88695	2.26357	5.89025	2.86201	2.47341	2.45816
1.6	0.57644	38.9579	3.70997	3.72202	-1.04896	2.29655	5.83381	2.91939	2.52446	2.68159
1.8	0.55711	40.1006	3.54865	3.70045	-1.20426	2.32571	5.80302	2.97035	2.57117	2.90364
2	0.53933	41.1486	3.41777	3.69218	-1.35491	2.35184	5.79159	3.01687	2.61476	3.12488
2.4	0.50767	43.0121	3.21994	3.70734	-1.64529	2.39642	5.81568	3.09798	2.69378	3.56648
2.5	0.50047	43.4348	3.18017	3.71673	-1.71602	2.40617	5.83037	3.11587	2.71191	3.67705
2.8	0.48004	44.6395	3.08025	3.75529	-1.92521	2.43283	5.8882	3.16648	2.76424	4.00853
3	0.46747	45.3817	3.02515	3.78935	-2.0627	2.4486	5.93984	3.19674	2.79684	4.23101
3.5	0.43899	47.0697	2.91884	3.89802	-2.39926	2.48207	6.10418	3.26266	2.87193	4.78851
4	0.41388	48.5692	2.84414	4.0351	-2.73038	2.50898	6.31134	3.31785	2.94026	5.35217
5	0.37141	51.1373	2.75271	4.37066	-3.37513	2.54824	6.81669	3.40323	3.06174	6.48482
7	0.30736	55.112	2.67451	5.21351	-4.64019	2.5936	8.09032	3.51145	3.27075	8.80245
8	0.28262	56.689	2.65629	5.69026	-5.2645	2.60693	8.81604	3.54504	3.36482	9.97827
10	0.24216	59.3215	2.64027	6.71025	-6.5058	2.62443	10.35348	3.59362	3.54948	12.35115
15	0.1764	63.7775	2.62128	9.34288	-9.44124	2.64301	14.27626	3.6443	3.98859	18.07754
30	0.09476	69.633	2.57999	14.88369	-15.22986	2.65262	21.15077	3.65462	5.27145	29.55044

Tabla 59. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 81. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 82 Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Coeficientes rotodinámicos para un punto de inyección para $\gamma = 7\pi/6$ y a=0.

					$\gamma = 7\pi/6 y d$	<i>n=0</i>				
	fpr	t=1	Kvy	Kar	King	King	Conv	Car	Curr	Curr
3	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу
0.05	32.4371	86.5578	1.30271	20.19954	-19.86951	2.54769	39.99537	2.55877	2.40102	39.90389
0.1	15.9296	82.8944	1.3423	10.38907	-9.74974	2.53533	20.37499	2.54685	2.46822	19.79869
0.15	10.3078	79.235	1.41036	7.24547	-6.29785	2.51541	13.99901	2.52816	2.47703	13.02832
0.2	7.41283	75.5816	1.50821	5.76905	-4.51431	2.48835	10.93573	2.50309	2.46635	9.59351
0.25	5.61451	71.9354	1.63791	4.96034	-3.3995	2.45469	9.19986	2.47213	2.44437	7.49488
0.3	4.37045	68.2963	1.8024	4.48683	-2.62027	2.41504	8.13089	2.43585	2.41425	6.06625
0.35	3.44903	64.6629	2.00596	4.2069	-2.03378	2.37012	7.44723	2.39485	2.37772	5.02228
0.4	2.735	61.0318	2.2547	4.05089	-1.56838	2.32067	7.00991	2.34979	2.33601	4.22033
0.45	2.16478	57.3976	2.55747	3.98165	-1.18384	2.26745	6.74405	2.30133	2.29011	3.58111
0.5	1.7005	53.7523	2.92714	3.97888	-0.85546	2.21123	6.60773	2.25012	2.24091	3.0569
0.55	1.31825	50.0844	3.38289	4.03242	-0.56671	2.15274	6.57834	2.1968	2.18916	2.61714
0.6	1.00221	46.3778	3.95406	4.13934	-0.30543	2.09267	6.64649	2.14195	2.13558	2.24117
0.65	0.74145	42.6103	4.68743	4.30331	-0.06156	2.03165	6.81416	2.08614	2.08077	1.91436
0.7	0.52817	38.7502	5.66159	4.53596	0.17464	1.97025	7.09618	2.02985	2.0253	1.62575
0.75	0.35661	34.7505	7.01873	4.86135	0.41458	1.90898	7.52656	1.97354	1.96965	1.36666
0.8	0.22241	30.5385	9.04399	5.32733	0.67487	1.84826	8.17537	1.91757	1.91422	1.12951
0.85	0.12215	25.9898	12.40352	6.0375	0.98604	1.78846	9.19647	1.86228	1.85938	0.90666
0.9	0.05309	20.8593	19.09693	7.26447	1.42209	1.72988	10.99705	1.80794	1.8054	0.68812
0.95	0.013	14.5066	39.12387	10.10016	2.2676	1.67276	15.21212	1.75479	1.75254	0.45362

Tabla 60. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=1.

				,	$\gamma = 7\pi/6 y d$	n=0				
	fpr	t =1	Кхх	Kxv	Kvx	Kvv	Схх	Cxv	Cvx	Cvv
S	3	φ		ЮЛУ	Кух		CAA	CAY	Cyx	0,,
0.004	0.9642	12.5907	54.9905	11.87967	2.75723	1.6571	17.86876	1.74122	1.73761	0.37727
0.008	0.95774	13.4672	46.43864	10.95622	2.50528	1.66413	16.48974	1.747	1.74444	0.41291
0.01	0.9546	13.8904	43.1628	10.58135	2.40178	1.66763	15.93012	1.75012	1.74774	0.42971
0.013	0.95	14.507	39.10626	10.09801	2.267	1.67278	15.20892	1.75481	1.75256	0.45373
0.02	0.93977	15.8625	32.30722	9.23186	2.02072	1.68433	13.9178	1.76548	1.7633	0.50502
0.05	0.90317	20.4813	19.74226	7.37247	1.45721	1.72627	11.15667	1.80458	1.80207	0.67429
0.1	0.86255	24.8862	13.62094	6.27733	1.07841	1.77371	9.54589	1.84866	1.8458	0.8522
0.2	0.81309	29.0851	9.744	5.48162	0.74886	1.83264	8.39495	1.90306	1.89995	1.07064
0.3	0.77077	32.9494	7.74879	5.03257	0.51826	1.88383	7.7619	1.95034	1.94673	1.26652
0.4	0.7361	35.8844	6.58597	4.75836	0.34593	1.92617	7.38746	1.98935	1.98529	1.43697
0.5	0.70739	38.1724	5.82906	4.57637	0.2087	1.9614	7.14795	2.02173	2.01728	1.58676
0.6	0.68188	40.1656	5.26942	4.44152	0.08828	1.99277	6.97789	2.05052	2.04569	1.72772
0.7	0.65888	41.9345	4.83583	4.33817	-0.02043	2.02104	6.85413	2.07642	2.07121	1.86196
0.8	0.63784	43.5353	4.48657	4.25678	-0.12103	2.04686	6.76267	2.10007	2.09447	1.9916
0.9	0.61838	45.0031	4.19763	4.19171	-0.21562	2.07065	6.69524	2.12183	2.11585	2.11781
1	0.60038	46.3493	3.95513	4.13956	-0.30501	2.09257	6.64669	2.14186	2.13549	2.24059
1.2	0.56756	48.7892	3.56462	4.06317	-0.47418	2.1322	6.59094	2.17805	2.17089	2.48132
1.4	0.53844	50.9355	3.26486	4.01478	-0.63277	2.16688	6.57634	2.20969	2.20172	2.71571
1.6	0.51221	52.86	3.02593	3.98664	-0.78433	2.19762	6.59172	2.23772	2.22892	2.94652
1.8	0.48839	54.6005	2.83088	3.97414	-0.93057	2.22504	6.63026	2.2627	2.25306	3.17475
2	0.46659	56.1905	2.66838	3.97415	-1.07294	2.24965	6.68745	2.28511	2.27461	3.40156
2.4	0.42803	58.9959	2.41364	4.00369	-1.34894	2.29185	6.84589	2.32354	2.31127	3.85257
2.5	0.41928	59.6313	2.36109	4.01618	-1.41657	2.30115	6.89315	2.33201	2.31929	3.9651
2.8	0.39492	61.401	2.22383	4.06376	-1.61673	2.3265	7.05007	2.3551	2.34101	4.30232
3	0.37999	62.485	2.14603	4.10315	-1.7489	2.34158	7.16642	2.36884	2.35382	4.52811
3.5	0.34684	64.8922	1.98878	4.22338	-2.07391	2.37374	7.48984	2.39814	2.38076	5.09261
4	0.31842	66.9576	1.86969	4.37017	-2.39531	2.3997	7.85403	2.42183	2.40203	5.66203
5	0.27284	70.2722	1.70599	4.72078	-3.02501	2.43787	8.66738	2.45671	2.43205	6.8033
7	0.21007	74.8469	1.52977	5.58264	-4.27105	2.48257	10.54169	2.49773	2.46317	9.13134
8	0.18781	76.4718	1.47993	6.0651	-4.88966	2.49599	11.55785	2.51011	2.47059	10.31008
10	0.1546	78.8989	1.41673	7.09361	-6.12244	2.51356	13.68802	2.52639	2.47711	12.68759
15	0.10802	82.3091	1.35016	9.73417	-9.04995	2.53277	19.05804	2.54421	2.47313	18.41819
30	0.06768	85.2688	1.30964	15.27144	-14.84211	2.54341	30.2049	2.55241	2.45966	29.88841

Tabla 61. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=1.

Figura 83. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=1.

Figura 84. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), fprt=1.

$\gamma = 7\pi/6 \text{ y } a = 0$											
	fpr	t=5	Kxx	Kau	Kung	King	Cvar	Cau	Curr	<u>Curr</u>	
3	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу	
0.05	33.2478	87.3546	1.36512	20.23385	-19.83521	2.56654	39.02241	2.62079	1.86628	39.93798	
0.1	16.2925	83.623	1.39752	10.41956	-9.71926	2.55215	19.93328	2.60337	2.2244	19.82989	
0.15	10.5195	79.894	1.45851	7.27217	-6.27115	2.53021	13.73563	2.57903	2.33101	13.05653	
0.2	7.54889	76.1725	1.54972	5.79216	-4.49121	2.50122	10.76131	2.54842	2.36924	9.61875	
0.25	5.70603	72.4618	1.67337	4.98017	-3.37967	2.46577	9.07798	2.5122	2.37624	7.51728	
0.3	4.43346	68.7632	1.83254	4.50374	-2.60336	2.42453	8.04294	2.47107	2.3649	6.08601	
0.35	3.4929	65.0759	2.03149	4.22127	-2.01941	2.37821	7.38241	2.42569	2.34123	5.03964	
0.4	2.76568	61.3968	2.27632	4.06309	-1.55617	2.32756	6.96142	2.37674	2.30863	4.23555	
0.45	2.18622	57.7204	2.57578	3.99201	-1.17347	2.27332	6.70737	2.32487	2.26935	3.59443	
0.5	1.7154	54.0384	2.9427	3.98771	-0.84663	2.21624	6.57974	2.2707	2.22503	3.06857	
0.55	1.3285	50.3386	3.39616	4.03997	-0.55916	2.15703	6.55684	2.21482	2.17694	2.62738	
0.6	1.00915	46.6047	3.96545	4.14583	-0.29894	2.09636	6.6299	2.1578	2.12613	2.2502	
0.65	0.74605	42.8138	4.69727	4.30892	-0.05594	2.03485	6.80133	2.10012	2.07345	1.92233	
0.7	0.53112	38.9336	5.67016	4.54085	0.17953	1.97304	7.08625	2.04225	2.01963	1.63283	
0.75	0.35842	34.9171	7.02626	4.86565	0.41888	1.91144	7.51889	1.9846	1.96527	1.37298	
0.8	0.22344	30.6909	9.05067	5.33115	0.67869	1.85045	8.16951	1.92752	1.91087	1.1352	
0.85	0.12267	26.1307	12.40954	6.04094	0.98948	1.79043	9.19208	1.87131	1.85686	0.91183	
0.9	0.0533	20.9913	19.10244	7.26763	1.42524	1.73169	10.99389	1.81625	1.80359	0.69288	
0.95	0.01305	14.6331	39.12907	10.10314	2.27058	1.67446	15.2101	1.7626	1.75138	0.45809	

Tabla 62. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=5.

$\gamma = 7\pi/6 \ y \ a = 0$										
	fpr	t=5	Кхх	Kxv	Kvx	Kvv	Схх	Сху	Сух	Cvv
S	3	φ		10,7	NJA	,,	CAR	CAY	Cyn	-
0.004	0.96422	12.713	54.99912	11.88454	2.7621	1.65985	17.86599	1.75409	1.73604	0.38453
0.008	0.95779	13.5866	46.44466	10.95965	2.5087	1.66609	16.48762	1.75601	1.74323	0.41804
0.01	0.95466	14.0086	43.16837	10.58453	2.40495	1.66944	15.92808	1.75846	1.74657	0.43447
0.013	0.95007	14.6234	39.11147	10.101	2.26998	1.67449	15.2069	1.76263	1.7514	0.45821
0.02	0.93988	15.9755	32.31219	9.23472	2.02358	1.68597	13.91567	1.77295	1.76207	0.50932
0.05	0.90338	20.5879	19.74771	7.3756	1.46033	1.72806	11.15361	1.81279	1.80032	0.679
0.1	0.86281	25.0002	13.62694	6.28074	1.08183	1.77566	9.54174	1.85767	1.84343	0.85734
0.2	0.81358	29.1846	9.75021	5.48522	0.75246	1.83473	8.38973	1.91236	1.89693	1.07602
0.3	0.7713	33.0656	7.75584	5.03661	0.52231	1.88614	7.75514	1.96077	1.94286	1.27251
0.4	0.73674	36.0033	6.59375	4.7628	0.35038	1.92871	7.37924	2.00076	1.9806	1.44349
0.5	0.70812	38.2954	5.83744	4.58116	0.21348	1.96413	7.13842	2.0339	2.01184	1.59371
0.6	0.68272	40.2905	5.2784	4.44664	0.0934	1.9957	6.96704	2.06344	2.03949	1.73509
0.7	0.65981	42.0632	4.8454	4.34362	-0.01497	2.02415	6.84192	2.09007	2.06425	1.86975
0.8	0.63886	43.6659	4.49672	4.26257	-0.11524	2.05016	6.74909	2.11443	2.08673	1.99979
0.9	0.61949	45.1371	4.20837	4.19783	-0.2095	2.07414	6.68025	2.13691	2.10731	2.1264
1	0.60158	46.4865	3.96645	4.14601	-0.29856	2.09624	6.63026	2.15763	2.12613	2.24957
1.2	0.56893	48.9316	3.57713	4.07028	-0.46706	2.13625	6.57148	2.1952	2.15983	2.49108
1.4	0.53998	51.083	3.27855	4.02256	-0.62499	2.1713	6.55373	2.22818	2.18887	2.72622
1.6	0.51389	53.0139	3.04079	3.99508	-0.77589	2.20241	6.56578	2.25753	2.21419	2.95777
1.8	0.49022	54.7597	2.84691	3.98323	-0.92148	2.2302	6.60083	2.28379	2.23637	3.18672
2	0.46855	56.3562	2.68559	3.9839	-1.06319	2.25517	6.65439	2.30747	2.25588	3.41423
2.4	0.43024	59.1739	2.43315	4.01472	-1.33791	2.29809	6.8051	2.34834	2.2882	3.86659
2.5	0.42155	59.8128	2.38118	4.02753	-1.40521	2.30757	6.85033	2.3574	2.29509	3.97945
2.8	0.39735	61.5919	2.24559	4.07605	-1.60445	2.33344	7.00102	2.38219	2.31332	4.31762
3	0.38251	62.6833	2.16889	4.11605	-1.736	2.34886	7.11301	2.39704	2.32369	4.54402
3.5	0.34957	65.1079	2.0143	4.23774	-2.05955	2.38182	7.42513	2.42896	2.34433	5.10996
4	0.32127	67.1933	1.89773	4.38592	-2.37955	2.40855	7.77728	2.45507	2.3589	5.6807
5	0.27587	70.547	1.7385	4.73899	-3.0068	2.44807	8.56536	2.4941	2.37491	6.82424
7	0.21318	75.1937	1.56944	5.60475	-4.24894	2.49489	10.3849	2.54146	2.3758	9.15571
8	0.19073	76.8622	1.52247	6.08877	-4.86599	2.50915	11.37187	2.55631	2.36714	10.33578
10	0.1576	79.329	1.46349	7.11956	-6.0965	2.52795	13.44477	2.57607	2.3422	12.71515
15	0.1107	82.8287	1.40239	9.76302	-9.0211	2.54871	18.68085	2.59805	2.26483	18.44793
30	0.07144	85.7641	1.35486	15.29633	-14.81723	2.5571	29.71322	2.59793	2.18933	29.91345

Tabla 63. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 85. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

Figura 86. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=5.

$\gamma = 7\pi/6 \text{ y } a = 0$											
	fprt	=10	Kvy	Kan	King	Kind	Com	C 177	Curre	Curr	
3	S	φ		кху	кух	куу	CXX	Сху	Сух	Суу	
0.05	34.2734	88.3007	1.44175	20.27301	-19.79605	2.58648	37.84837	2.69562	1.26678	39.97619	
0.1	16.7525	84.4945	1.46572	10.45478	-9.68404	2.57029	19.39703	2.67199	1.94765	19.86531	
0.15	10.7881	80.6873	1.51823	7.30335	-6.23997	2.54645	13.41424	2.64112	2.16333	13.08892	
0.2	7.72154	76.8877	1.60136	5.81941	-4.46396	2.51556	10.54758	2.60397	2.25654	9.64804	
0.25	5.8221	73.1018	1.7176	5.00373	-3.3561	2.47831	8.92812	2.56147	2.29642	7.54352	
0.3	4.51328	69.3329	1.87017	4.52398	-2.58312	2.4354	7.93454	2.51447	2.30663	6.10934	
0.35	3.54842	65.5814	2.06338	4.23856	-2.00212	2.38758	7.30237	2.46377	2.29784	5.06028	
0.4	2.80445	61.8447	2.30331	4.07784	-1.54143	2.33561	6.90145	2.41006	2.27588	4.25374	
0.45	2.21326	58.1173	2.59866	4.00459	-1.1609	2.28023	6.66195	2.35401	2.24439	3.61045	
0.5	1.73417	54.3906	2.96213	3.99845	-0.83589	2.22218	6.54506	2.29619	2.20586	3.08267	
0.55	1.3414	50.6521	3.41274	4.04918	-0.54995	2.16215	6.53018	2.23717	2.16214	2.6398	
0.6	1.01788	46.8847	3.97967	4.15376	-0.29101	2.10078	6.60932	2.17745	2.11465	2.26116	
0.65	0.75183	43.0651	4.70954	4.31579	-0.04907	2.03869	6.7854	2.11747	2.06454	1.93204	
0.7	0.53483	39.1604	5.68084	4.54685	0.18553	1.97641	7.07392	2.05765	2.01271	1.64148	
0.75	0.36069	35.1231	7.03564	4.87093	0.42416	1.91441	7.50938	1.99834	1.95991	1.38072	
0.8	0.22474	30.8796	9.05899	5.33585	0.68339	1.8531	8.16223	1.93987	1.90677	1.14217	
0.85	0.12333	26.3051	12.41702	6.04518	0.99371	1.79282	9.18662	1.88252	1.85378	0.91817	
0.9	0.05357	21.1547	19.10929	7.27151	1.42913	1.73388	10.98996	1.82656	1.80137	0.69872	
0.95	0.01311	14.7896	39.13554	10.10681	2.27425	1.67654	15.2076	1.77229	1.74996	0.46358	

Tabla 64. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=10.

$\gamma = 7\pi/6 \ y \ a = 0$										
	fprt	=10	Кхх	Kxv	Kvx	Kww	Схх	Сху	Cvx	Cvv
S	3	φ		i i i i i i i i i i i i i i i i i i i	NyA.	куу	CAA	Слу	Cyx	Cyy
0.004	0.96425	12.8641	55.00991	11.89056	2.76811	1.6632	17.86252	1.77013	1.73411	0.39348
0.008	0.95784	13.7344	46.45217	10.96387	2.51293	1.66846	16.48498	1.76722	1.74175	0.42434
0.01	0.95473	14.1548	43.17531	10.58844	2.40887	1.67165	15.92554	1.76883	1.74514	0.44032
0.013	0.95017	14.7674	39.11796	10.10467	2.27366	1.67657	15.2044	1.77234	1.74999	0.46371
0.02	0.94001	16.1152	32.31836	9.23823	2.02709	1.68797	13.91303	1.78222	1.76057	0.51459
0.05	0.90364	20.7196	19.75448	7.37943	1.46416	1.73023	11.14982	1.82296	1.79817	0.68476
0.1	0.86313	25.1409	13.63441	6.28494	1.08603	1.77802	9.53661	1.86885	1.84055	0.86363
0.2	0.81418	29.3082	9.75791	5.48963	0.75686	1.83724	8.3833	1.92386	1.89325	1.0826
0.3	0.77196	33.2091	7.76459	5.04156	0.52726	1.88894	7.7468	1.97369	1.93815	1.27981
0.4	0.73754	36.1495	6.60342	4.76824	0.35582	1.93177	7.36912	2.01487	1.9749	1.45143
0.5	0.70903	38.4466	5.84785	4.587	0.21933	1.96742	7.12669	2.04895	2.00526	1.60217
0.6	0.68375	40.4438	5.28954	4.45289	0.09965	1.9992	6.9537	2.0794	2.03201	1.74404
0.7	0.66095	42.2208	4.85726	4.35027	-0.00832	2.02787	6.82694	2.10692	2.05586	1.87919
0.8	0.64013	43.8256	4.50931	4.26961	-0.1082	2.0541	6.73245	2.13215	2.07742	2.0097
0.9	0.62087	45.3007	4.22168	4.20526	-0.20206	2.07829	6.66188	2.1555	2.09705	2.13678
1	0.60305	46.6539	3.98048	4.15384	-0.29074	2.10061	6.61015	2.17706	2.11492	2.26041
1.2	0.57061	49.1048	3.5926	4.07889	-0.45845	2.14104	6.54774	2.2163	2.14662	2.50282
1.4	0.54187	51.2619	3.29545	4.03194	-0.61561	2.1765	6.52619	2.2509	2.17359	2.73883
1.6	0.51596	53.2001	3.05913	4.00524	-0.76574	2.20803	6.53426	2.28184	2.19675	2.97122
1.8	0.49248	54.9517	2.86668	3.99415	-0.91056	2.23622	6.56517	2.30965	2.21668	3.201
2	0.47097	56.5557	2.70678	3.99558	-1.05151	2.2616	6.61439	2.33485	2.23385	3.42931
2.4	0.43296	59.3871	2.45713	4.02788	-1.32475	2.3053	6.75598	2.37862	2.26128	3.8832
2.5	0.42434	60.03	2.40585	4.04105	-1.3917	2.31497	6.79883	2.38838	2.26689	3.99642
2.8	0.40034	61.8196	2.27229	4.09063	-1.58987	2.34139	6.9422	2.41521	2.28122	4.33565
3	0.38561	62.919	2.19693	4.13132	-1.72073	2.35718	7.0491	2.43139	2.28888	4.56274
3.5	0.35289	65.365	2.04554	4.25468	-2.04261	2.391	7.34801	2.46641	2.30254	5.13026
4	0.32479	67.4709	1.93201	4.40443	-2.36105	2.41853	7.68622	2.49539	2.30978	5.70247
5	0.27959	70.8695	1.7782	4.76025	-2.98554	2.45944	8.44515	2.53936	2.3106	6.84847
7	0.21701	75.5997	1.61777	5.63032	-4.22337	2.5084	10.20223	2.5942	2.2793	9.1836
8	0.19435	77.3171	1.5744	6.11612	-4.83864	2.52353	11.15533	2.61207	2.25328	10.36514
10	0.16124	79.8347	1.52034	7.14928	-6.06677	2.54346	13.16503	2.63574	2.19623	12.74634
15	0.11382	83.4474	1.46575	9.79581	-8.98831	2.56563	18.2524	2.66248	2.04374	18.48126
30	0.07515	86.3971	1.40758	15.32333	-14.79022	2.57088	29.19937	2.65025	1.92763	29.94024

Tabla 65. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 87. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

Figura 88. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=10.

$\gamma = 7\pi/6 \text{ y } a = 0$											
	fprt	=20	Kvv	Ken	Kenn	K	Gui	C	C	Carrie	
3	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу	
0.05	36.3621	90.0406	1.58952	20.34014	-19.72892	2.61651	35.64012	2.83638	0.26673	40.03994	
0.1	17.6924	86.1153	1.59853	10.51633	-9.62248	2.59846	18.37835	2.80235	1.47683	19.92555	
0.15	11.3378	82.1778	1.63548	7.35883	-6.18449	2.57243	12.79838	2.76008	1.87263	13.14508	
0.2	8.07501	78.2433	1.70336	5.86867	-4.4147	2.53916	10.13505	2.71118	2.05772	9.69972	
0.25	6.05956	74.324	1.80533	5.04693	-3.3129	2.49945	8.63716	2.65712	2.15339	7.59054	
0.3	4.67635	70.4277	1.94502	4.5615	-2.5456	2.45412	7.72306	2.59915	2.20075	6.15174	
0.35	3.66161	66.5577	2.12694	4.27095	-1.96973	2.40402	7.14565	2.53832	2.21807	5.09823	
0.4	2.88333	62.7133	2.35717	4.10568	-1.51358	2.34996	6.78372	2.47548	2.21506	4.28754	
0.45	2.26817	58.8896	2.6443	4.02849	-1.137	2.29272	6.57261	2.41133	2.19763	3.64045	
0.5	1.77219	55.0778	3.00089	4.01898	-0.81536	2.23303	6.47673	2.34642	2.16969	3.10925	
0.55	1.36747	51.265	3.44579	4.06685	-0.53228	2.17158	6.47761	2.28126	2.13404	2.66336	
0.6	1.03549	47.4331	4.008	4.16903	-0.27574	2.10901	6.5687	2.21624	2.09276	2.28207	
0.65	0.76347	43.558	4.73399	4.32907	-0.0358	2.0459	6.75393	2.15174	2.04746	1.95065	
0.7	0.54228	39.6057	5.7021	4.55846	0.19715	1.98275	7.04954	2.08806	1.9994	1.65809	
0.75	0.36525	35.528	7.0543	4.88118	0.43441	1.92003	7.49057	2.0255	1.94959	1.39563	
0.8	0.22733	31.2505	9.07554	5.34497	0.69252	1.85813	8.14785	1.96429	1.89883	1.15564	
0.85	0.12464	26.6481	12.4319	6.05341	1.00194	1.79738	9.17583	1.90469	1.84781	0.93043	
0.9	0.0541	21.476	19.1229	7.27906	1.43668	1.73807	10.98222	1.84693	1.79707	0.71002	
0.95	0.01324	15.0972	39.14836	10.11393	2.28138	1.6805	15.20266	1.79142	1.74722	0.47421	

Tabla 66. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=20.

				,	$\gamma = 7\pi/6 y c$	<i>a=0</i>				
	fprt	t=20	Кхх	Kyy	Kvy	Kwy	Cvv	Сху	Cvx	CVV
S	3	φ		i kay	Кул	куу	C//	Слу	Cyx	Суу
0.004	0.96431	13.1612	55.03147	11.90237	2.77992	1.66966	17.85564	1.80209	1.73034	0.41098
0.008	0.95796	14.0247	46.46713	10.97213	2.52119	1.67302	16.47975	1.78947	1.73886	0.43663
0.01	0.95487	14.442	43.18912	10.59609	2.41652	1.67588	15.92053	1.7894	1.74236	0.45171
0.013	0.95035	15.0504	39.13085	10.11183	2.28082	1.68055	15.19946	1.79158	1.74725	0.4744
0.02	0.94028	16.3896	32.3306	9.24506	2.03392	1.69178	13.90784	1.80052	1.75768	0.5248
0.05	0.90415	20.9779	19.76786	7.38687	1.4716	1.73436	11.14241	1.84301	1.79405	0.6959
0.1	0.86377	25.4163	13.64922	6.29311	1.09419	1.78252	9.52652	1.89094	1.83499	0.8758
0.2	0.81535	29.5529	9.77311	5.49813	0.76537	1.842	8.37076	1.94644	1.88624	1.09524
0.3	0.77325	33.49	7.78193	5.05113	0.53682	1.89422	7.73049	1.99912	1.92915	1.29384
0.4	0.73911	36.4341	6.62254	4.77873	0.3663	1.93751	7.34936	2.04261	1.96407	1.46664
0.5	0.71082	38.7404	5.86843	4.59825	0.23058	1.97356	7.10383	2.07852	1.99276	1.61833
0.6	0.6858	40.7409	5.31153	4.46488	0.11164	2.00573	6.92776	2.11071	2.01787	1.76111
0.7	0.66321	42.5257	4.88067	4.363	0.0044	2.03479	6.79785	2.13995	2.04005	1.89714
0.8	0.64263	44.1339	4.53411	4.28305	-0.09476	2.06139	6.7002	2.16683	2.05994	2.02851
0.9	0.62357	45.6159	4.2479	4.21944	-0.18789	2.08595	6.62636	2.19184	2.07785	2.15643
1	0.60595	46.9758	4.00808	4.16873	-0.27585	2.10863	6.57134	2.215	2.09399	2.28088
1.2	0.57393	49.4362	3.62298	4.0952	-0.44215	2.14978	6.50209	2.25741	2.12213	2.52487
1.4	0.54558	51.6029	3.32857	4.04963	-0.59792	2.18594	6.47346	2.29505	2.14546	2.7624
1.6	0.52001	53.5535	3.09502	4.02431	-0.74667	2.21815	6.47411	2.32899	2.16481	2.99627
1.8	0.4969	55.3144	2.90527	4.01456	-0.89015	2.247	6.4974	2.35968	2.18088	3.22745
2	0.47569	56.9309	2.74808	4.01733	-1.02976	2.27303	6.53864	2.38772	2.19402	3.45713
2.4	0.43828	59.7847	2.50373	4.0522	-1.30043	2.31796	6.66364	2.43688	2.21317	3.91359
2.5	0.42978	60.4342	2.45376	4.06599	-1.36675	2.32792	6.70216	2.44795	2.21664	4.02743
2.8	0.40612	62.2441	2.32404	4.11741	-1.56309	2.35521	6.8323	2.47856	2.22446	4.36841
3	0.39165	63.3535	2.25117	4.15928	-1.69277	2.37154	6.93016	2.49714	2.22772	4.5966
3.5	0.35936	65.836	2.10583	4.28546	-2.01183	2.40665	7.20548	2.53789	2.22998	5.16673
4	0.33165	67.9749	1.99799	4.43782	-2.32766	2.43535	7.51918	2.5721	2.22553	5.74125
5	0.28684	71.4513	1.85439	4.79822	-2.94757	2.47826	8.22703	2.62512	2.20236	6.89116
7	0.22443	76.3276	1.71022	5.67532	-4.17838	2.53013	9.8765	2.69359	2.12175	9.23192
8	0.20161	78.1173	1.6736	6.16398	-4.79078	2.54643	10.77201	2.71696	2.06967	10.41566
10	0.16822	80.7473	1.62886	7.20091	-6.01514	2.56778	12.67457	2.74774	1.96495	12.79954
15	0.11954	84.5843	1.58716	9.85243	-8.93169	2.59172	17.50647	2.78356	1.69976	18.5376
30	0.08013	87.6801	1.50864	15.36966	-14.74389	2.59182	28.3113	2.74848	1.52704	29.98516

Tabla 67. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

"Regresar a índice"

Figura 89. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

Figura 90. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=20.

$\gamma = 7\pi/6 \text{ y } a = 0$											
	fprt	=50	Kyy	Kana	Kenne	K	Gun	Guna	C	C	
З	S	φ		кху	кух	куу	Cxx	Сху	Сух	Суу	
0.05	42.8689	94.2678	1.98133	20.47227	-19.59679	2.65685	30.05594	3.19232	-1.59058	40.15832	
0.1	20.6454	90.1501	1.9598	10.64339	-9.49542	2.63972	15.74109	3.13983	0.56101	20.04275	
0.15	13.0744	85.9759	1.96175	7.47878	-6.06454	2.61386	11.16837	3.07496	1.28	13.25956	
0.2	9.19441	81.7729	1.99261	5.97986	-4.30351	2.5799	9.02138	3.00063	1.63365	9.80993	
0.25	6.81136	77.567	2.05786	5.14828	-3.21156	2.53865	7.83832	2.91974	1.83529	7.69511	
0.3	5.19141	73.3798	2.16289	4.65254	-2.45456	2.49112	7.13432	2.83489	1.9563	6.24962	
0.35	4.01775	69.2262	2.31337	4.35177	-1.88891	2.43833	6.70447	2.7482	2.02776	5.18876	
0.4	3.13034	65.1139	2.51592	4.17682	-1.44245	2.38133	6.44939	2.66127	2.06584	4.37046	
0.45	2.43925	61.0434	2.77924	4.09075	-1.07474	2.32109	6.31717	2.57521	2.08015	3.71582	
0.5	1.89004	57.0085	3.11568	4.07331	-0.76103	2.2585	6.28035	2.49078	2.07697	3.17741	
0.55	1.44789	52.9971	3.54372	4.11424	-0.4849	2.19434	6.32592	2.40844	2.06078	2.72479	
0.6	1.08956	48.9905	4.09194	4.21043	-0.23434	2.12931	6.45114	2.3285	2.03487	2.33735	
0.65	0.79905	44.9629	4.80637	4.36535	0.00048	2.064	6.66268	2.25111	2.00177	2.0004	
0.7	0.56497	40.8789	5.76498	4.59043	0.22911	1.99894	6.97876	2.1764	1.96345	1.70295	
0.75	0.37907	36.6882	7.10941	4.90952	0.46275	1.93457	7.43588	2.10445	1.92148	1.4362	
0.8	0.23517	32.315	9.12436	5.37033	0.71787	1.87127	8.106	2.03533	1.87711	1.19251	
0.85	0.1286	27.6335	12.47569	6.07634	1.02487	1.80936	9.14445	1.96916	1.83138	0.96417	
0.9	0.05571	22.3992	19.16287	7.30012	1.45774	1.74915	10.95969	1.90614	1.78521	0.74121	
0.95	0.01361	15.9796	39.18589	10.13378	2.30123	1.69098	15.18834	1.84692	1.73964	0.50357	

Tabla 68. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), .05 $\leq \varepsilon_{pres} \geq$.95 en lapsos de .05, *fprt*=50.

					$\gamma = 7\pi/6 y$	a=0				
	fprt	=50	Кхх	Kxv	Кух	Kvv	Схх	Cxv	Сух	Cvv
S	3	φ		,	,	,,	••••	City	• 7/1	-//
0.004	0.96446	14.013	55.09607	11.93604	2.81359	1.68719	17.83523	1.89709	1.7197	0.46049
0.008	0.95829	14.8569	46.51158	10.99549	2.54455	1.68527	16.46444	1.85502	1.73082	0.47106
0.01	0.95529	15.2652	43.23001	10.61763	2.43806	1.68722	15.9059	1.84977	1.73466	0.48352
0.013	0.95088	15.861	39.16888	10.13194	2.30093	1.69116	15.18514	1.84781	1.73968	0.50412
0.02	0.94106	17.1753	32.36649	9.26411	2.05298	1.70188	13.89291	1.8537	1.74975	0.55303
0.05	0.90564	21.7148	19.80689	7.40748	1.49221	1.74523	11.12127	1.90087	1.7829	0.72645
0.1	0.86565	26.1987	13.69272	6.3158	1.11689	1.79434	9.49756	1.95508	1.81989	0.90926
0.2	0.81863	30.2666	9.81721	5.52146	0.7887	1.85432	8.3354	2.01118	1.86755	1.12946
0.3	0.77695	34.287	7.83253	5.07737	0.56306	1.90779	7.68428	2.07236	1.90521	1.3318
0.4	0.74366	37.2305	6.67813	4.80727	0.39484	1.95212	7.29375	2.12213	1.93557	1.50743
0.5	0.716	39.5583	5.92818	4.62872	0.26105	1.98904	7.03974	2.1631	1.96014	1.66143
0.6	0.69171	41.5632	5.37517	4.49713	0.14389	2.02202	6.85547	2.1999	1.98131	1.80628
0.7	0.66971	43.365	4.94829	4.39706	0.03846	2.05187	6.71714	2.23381	1.99949	1.94438
0.8	0.64982	44.9778	4.60549	4.3188	-0.05901	2.0792	6.61125	2.26501	2.01551	2.07762
0.9	0.63132	46.4736	4.32318	4.25691	-0.15041	2.10451	6.52884	2.29444	2.02943	2.20745
1	0.61425	47.8479	4.08718	4.20787	-0.2367	2.12789	6.46522	2.32186	2.04163	2.3337
1.2	0.58339	50.3235	3.70955	4.13756	-0.39979	2.17038	6.37861	2.37242	2.06192	2.58109
1.4	0.55608	52.5108	3.42251	4.0951	-0.55245	2.20779	6.33217	2.41791	2.07735	2.82179
1.6	0.53152	54.4784	3.19624	4.07279	-0.69819	2.24117	6.31454	2.45943	2.08876	3.05865
1.8	0.50932	56.2602	3.01364	4.06593	-0.83878	2.27112	6.3192	2.4974	2.09687	3.29262
2	0.48903	57.8915	2.86345	4.07146	-0.97563	2.29816	6.34152	2.53241	2.1021	3.52491
2.4	0.45321	60.7835	2.63271	4.11156	-1.24107	2.34493	6.42762	2.59476	2.1054	3.98611
2.5	0.44508	61.442	2.58606	4.12661	-1.30614	2.35532	6.45625	2.60899	2.10492	4.10105
2.8	0.42236	63.2889	2.4662	4.18167	-1.49883	2.38381	6.55594	2.64883	2.10076	4.44519
3	0.40852	64.4176	2.39958	4.22578	-1.62627	2.40085	6.63358	2.67312	2.09624	4.67526
3.5	0.37749	66.9597	2.26942	4.35728	-1.94001	2.43757	6.8569	2.72746	2.07897	5.24972
4	0.35087	69.1539	2.17552	4.51429	-2.25119	2.46754	7.11849	2.77372	2.05569	5.82782
5	0.30734	72.7685	2.05712	4.88269	-2.8631	2.51243	7.7198	2.8477	1.99556	6.98355
7	0.24527	77.9649	1.95442	5.77205	-4.08164	2.56689	9.14719	2.94891	1.84214	9.33252
8	0.22289	79.8503	1.93197	6.26419	-4.69057	2.58348	9.94329	2.98243	1.76079	10.51803
10	0.1876	82.819	1.91514	7.30883	-5.90723	2.60625	11.61232	3.03394	1.58281	12.90667
15	0.13471	87.2579	1.91395	9.97057	-8.81354	2.6316	15.88001	3.0978	1.14427	18.65021
30	0.08571	91.2952	1.82558	15.48276	-14.6308	2.62964	25.74735	3.04394	0.63992	30.08961

Tabla 69. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 91. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

Figura 92. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=50.

$\gamma = 7\pi/6 \ y \ a = 0$											
8	fprt: S	=100 0	Кхх	Кху	Кух	Куу	Схх	Сху	Сух	Суу	
54.2483	99.0685	1.18296	2.46994	20.55863	-19.5104	2.65707	23.46347	3.61254	-2.67832	40.22766	
25.8832	94.8904	1.10091	2.42933	10.73495	-9.40386	2.64449	12.51589	3.55254	-0.02946	20.11831	
16.1889	90.6009	1.00532	2.4036	7.57426	-5.96906	2.62355	9.10001	3.4745	0.85707	13.34126	
11.2165	86.2268	0.90195	2.39977	6.07726	-4.20611	2.59436	7.55589	3.3815	1.29901	9.8969	
8.1739	81.7998	0.79664	2.42568	5.24523	-3.11461	2.55732	6.75089	3.27723	1.55939	7.78582	
6.12449	77.3525	0.69456	2.48942	4.74669	-2.36041	2.51305	6.30845	3.16558	1.72534	6.3421	
4.66069	72.9142	0.5996	2.59917	4.44116	-1.79952	2.46243	6.06956	3.05024	1.83393	5.28097	
3.57369	68.5074	0.51419	2.76349	4.26005	-1.35921	2.40651	5.95802	2.93432	1.90374	4.46054	
2.74411	64.1456	0.43939	2.99228	4.16707	-0.99842	2.34642	5.93538	2.82017	1.94537	3.8023	
2.0984	59.8326	0.37519	3.29844	4.14249	-0.69185	2.28326	5.98292	2.70942	1.96565	3.25924	
1.58892	55.5625	0.32091	3.70048	4.17647	-0.42266	2.21803	6.09381	2.60307	1.96944	2.80138	
1.18365	51.3203	0.2755	4.22672	4.26617	-0.1786	2.15163	6.26984	2.50162	1.9604	2.40846	
0.860499	47.0817	0.23781	4.92278	4.4152	0.05034	2.08482	6.52111	2.40529	1.94146	2.06608	
0.603894	42.8111	0.20669	5.86614	4.63506	0.27374	2.01824	6.86846	2.31406	1.91499	1.76343	
0.40262	38.4577	0.18117	7.19802	4.94961	0.50284	1.95242	7.3504	2.22786	1.88293	1.49185	
0.248457	33.9445	0.1604	9.20272	5.40653	0.75407	1.88777	8.04046	2.14659	1.84691	1.24378	
0.135269	29.145	0.1438	12.54582	6.1093	1.05784	1.82468	9.09526	2.07021	1.80831	1.01157	
0.0583928	23.8159	0.1311	19.22665	7.3305	1.48812	1.76349	10.92441	1.99889	1.76843	0.78532	
0.0142314	17.3305	0.12285	39.24541	10.16239	2.32983	1.70461	15.16597	1.93357	1.72891	0.54516	

Tabla 70. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando: $\gamma = 7\pi/6$, (L/D) = (1/4), $.05 \le \varepsilon_{pres} \ge .95$ en lapsos de .05, *fprt*=100.

					$\gamma = 7\pi/6 y c$	n=0				
	fprt	=100	Кхх	Kyy	Kvy	Kwy	Cvv	Сху	Cvx	CVV
S	3	φ		i kay	Кух	куу	CAA	CAY	Cyx	Cyy
0.004	0.9647	15.3158	55.20347	11.98705	2.8646	1.71123	17.80196	2.0528	1.70393	0.53435
0.008	0.9588	16.1291	46.58425	11.03023	2.57928	1.70174	16.44004	1.96059	1.71918	0.52146
0.01	0.95592	16.5233	43.29644	10.64946	2.46989	1.70234	15.88279	1.94635	1.72361	0.52973
0.013	0.9517	17.0993	39.2302	10.1614	2.33039	1.7052	15.16275	1.93705	1.72895	0.54694
0.02	0.94227	18.3739	32.42366	9.29167	2.08054	1.71505	13.86994	1.93703	1.73871	0.59314
0.05	0.90799	22.8302	19.86823	7.43682	1.52155	1.75913	11.08942	1.99018	1.76772	0.76909
0.1	0.86865	27.3721	13.76191	6.3483	1.14938	1.80944	9.45343	2.05513	1.79925	0.95615
0.2	0.82343	31.3878	9.8865	5.55423	0.82146	1.86962	8.28263	2.11067	1.84274	1.17641
0.3	0.78263	35.479	7.91233	5.11401	0.59971	1.92438	7.61527	2.18516	1.87372	1.38346
0.4	0.75088	38.3722	6.76453	4.84631	0.43389	1.96948	7.21248	2.24278	1.89912	1.56179
0.5	0.72405	40.7374	6.02104	4.6701	0.30242	2.00714	6.94639	2.29127	1.9189	1.71835
0.6	0.70085	42.7387	5.47341	4.54036	0.18712	2.04065	6.75138	2.33406	1.93595	1.8651
0.7	0.67975	44.5503	5.0522	4.44221	0.08361	2.07104	6.60191	2.37424	1.94996	2.00516
0.8	0.66069	46.175	4.71481	4.36573	-0.01208	2.09885	6.48515	2.4113	1.96202	2.14016
0.9	0.6432	47.6597	4.43752	4.30542	-0.10191	2.12453	6.39238	2.44601	1.97232	2.27146
1	0.62691	49.0421	4.20678	4.25803	-0.18655	2.1483	6.31794	2.47896	1.98078	2.39926
1.2	0.59774	51.5122	3.83888	4.19058	-0.34677	2.19135	6.21067	2.5394	1.9943	2.64917
1.4	0.57182	53.7094	3.56164	4.1509	-0.49665	2.22926	6.14305	2.59465	2.00307	2.89225
1.6	0.54878	55.6668	3.34433	4.13092	-0.64006	2.26294	6.10533	2.64476	2.00863	3.13093
1.8	0.52779	57.4552	3.17085	4.12638	-0.77833	2.29315	6.08917	2.69137	2.01089	3.36669
2	0.50875	59.083	3.02915	4.1339	-0.91319	2.32031	6.09151	2.73418	2.01089	3.60037
2.4	0.47505	61.9784	2.81481	4.17759	-1.17504	2.36713	6.13771	2.8112	2.00454	4.06392
2.5	0.46743	62.6366	2.77202	4.1934	-1.23934	2.37748	6.15663	2.82878	2.00191	4.1793
2.8	0.44618	64.4772	2.6631	4.25046	-1.43003	2.40573	6.22819	2.87791	1.99204	4.52448
3	0.43309	65.6152	2.60391	4.29595	-1.5561	2.42263	6.2863	2.90848	1.98362	4.75529
3.5	0.40392	68.1634	2.49034	4.43001	-1.86728	2.4587	6.4642	2.97627	1.95876	5.33073
4	0.37859	70.3888	2.41238	4.58935	-2.17613	2.48802	6.6798	3.0352	1.92853	5.90968
5	0.33709	74.0593	2.32058	4.96055	-2.78523	2.53114	7.198	3.12907	1.86	7.06551
7	0.27676	79.4234	2.25964	5.85261	-4.00108	2.58202	8.47517	3.25933	1.70127	9.41291
8	0.25378	81.4657	2.2571	6.34667	-4.60809	2.59753	9.18569	3.30692	1.61437	10.59861
10	0.21811	84.6309	2.26511	7.39118	-5.82487	2.61735	10.73047	3.37343	1.44466	12.9845
15	0.16072	89.6685	2.31213	10.05511	-8.72901	2.6391	14.63875	3.46736	1.0079	18.72593
30	0.09168	95.5644	2.35653	15.60353	-14.51003	2.64798	22.01143	3.51722	-0.1275	30.19417

Tabla 71. Coeficientes de rigidez y amortiguamiento una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 93. Variación del coeficiente de rigidez respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta, donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Figura 94. Variación del coeficiente de amortiguamiento respecto a la excentricidad para una chumacera hidrodinámica presurizada tipo corta donde: $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*=100.

Al comparar los coeficientes rotodinámicos (rigidez y amortiguamiento) de cada punto de presurización con el caso clásico (sin presurización), se puede observar como varían según la intensidad de presurización y la posición en la que se presurice. La posición que tiene mayor efecto sobre los coeficientes rotodinámicos es la más cercana a la línea de centros en estado estable (rotor-chumacera) y que se encuentra en el mismo sentido a la dirección de la fuerza. De los puntos de presurización analizados en esta tesis el más cercano a dicha línea de Centros es ($\gamma = \pi/6$), presentando la mayor variación en sus coeficientes rotodinámicos y mayor desplazamiento del rotor dentro de la chumacera, mientras tanto la posición de presurización que presenta menor variación y menor desplazamiento es: $\gamma = 7\pi/6$, la cual es el punto más cercano a la línea de centros, pero opuesto a la dirección de la fuerza.

10.5 Velocidades umbrales de estabilidad para una chumacera hidrodinámica presurizada con puertos de inyección para $\gamma = \pi/6$, $11\pi/6$, $5\pi/6$, $7\pi/6$ y a=0.

A partir del criterio de Lienard-Chipard (capítulo 9.1) se obtuvieron las velocidades umbrales de estabilidad, aplicando directamente la ecuación 9.38 a la solución de las matrices de rigidez \overline{K}_{TOT} y amortiguamiento \overline{C}_{TOT} , que son los coeficientes de una chumacera hidrodinámica presurizada tipo corta a diferentes intensidades de presurización y distintos puntos de inyección de lubricante(Capítulo 10.4).

Velocidad umbral de estabilidad para $\gamma = \pi/6$ y a=0

r	
de e	entrada es el número de Sommerfeld, $\gamma = \pi/6$, a=0, (L/D) = (1/4), fprt ≈ 0 , fprt=1, 5, 10, 20, 50 y 100.
Tabla 72.	Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato

							<u>γ=</u> π/6, ε	a=0.						
	fpri	t≈0	fpr	<i>t</i> =1	fpr	<i>t</i> =5	fpri	=10	f _{prt}	=20	fpri	_t =50	f _{prt} =	100
S	3	P ² umb	ε _{pres}	P ² umb	ε _{pres}	P ² umb	ε _{pres}	P ² umb	3	P ² umb	ε _{pres}	P ² umb	ε _{pres}	P^2_{umb}
0.004	0.9642	-0.298	0.9607	-0.3308	0.9592	-0.1335	0.9586	0.003	0.9581	0.1706	0.9577	0.4207	0.9577	0.602
0.008	0.9577	-0.366	0.9504	-0.414	0.9477	-0.2424	0.9467	-0.1134	0.9459	0.0496	0.9455	0.2955	0.946	0.4688
0.01	0.9546	-0.4009	0.9455	-0.4751	0.9422	-0.2992	0.941	-0.1642	0.9401	0.008	0.9398	0.2682	0.9404	0.4492
0.013	0.95	-0.4546	0.9385	-0.5865	0.9344	-0.3938	0.9329	-0.2449	0.9319	-0.0532	0.9316	0.2367	0.9325	0.4354
0.02	0.9397	-0.5855	0.9233	-0.9482	0.9177	-0.667	0.9158	-0.4713	0.9145	-0.2185	0.9142	0.1641	0.9157	0.4206
0.05	0.9031	-1.2306	0.8753	-12.7673	0.8668	-2.857	0.8642	-2.1339	0.8627	-1.4329	0.863	-0.4553	0.8656	0.1781
0.1	0.8625	-2.5423	0.8322	2.6868	0.8188	-15.8418	0.8149	-7.323	0.813	-4.6709	0.8151	-2.1399	0.8212	-0.6937
0.2	0.813	-6.9021	0.7702	0.8098	0.7441	11.571	0.7381	117.7858	0.7359	-27.2761	0.7398	-9.8047	0.7491	-3.5121
0.3	0.7706	-34.949	0.7303	-0.3848	0.6931	6.051	0.6845	17.0228	0.6817	133.368	0.6876	-38.1081	0.7005	-13.039
0.4	0.7359	30.7039	0.701	-2.0374	0.6538	4.2844	0.6415	11.416	0.6376	42.5748	0.6454	-79.6964	0.6615	-42.570
0.5	0.7072	14.5903	0.6789	-5.2528	0.6228	3.1559	0.6057	9.1608	0.6001	30.3539	0.6093	-59.6152	0.6286	-66.743
0.6	0.6817	10.8038	0.6575	-16.5335	0.5975	2.0585	0.5756	7.7981	0.5672	24.0497	0.5777	-37.4406	0.6001	-41.115
0.7	0.6587	9.1475	0.6366	95.7633	0.5776	0.6443	0.5496	6.9117	0.5382	19.9893	0.5494	-26.6077	0.5745	-22.934
0.8	0.6376	8.2351	0.6183	19.0189	0.5611	-1.5469	0.5279	6.2222	0.5122	17.3992	0.5237	-21.1396	0.5516	-14.558
0.9	0.6181	7.67	0.6012	12.4885	0.5467	-5.9147	0.5095	5.5223	0.4889	15.9796	0.5002	-18.4588	0.5306	-10.118
1	0.6001	7.2967	0.5849	10.0933	0.5346	-20.2308	0.4937	4.4458	0.468	15.7145	0.4784	-17.3385	0.5113	-7.5566
1.2	0.5672	6.851	0.5548	8.1663	0.5118	23.146	0.4688	-12.3631	0.4326	21.2279	0.4393	-18.8972	0.4767	-4.7478
1.4	0.5381	6.6189	0.5276	7.3924	0.4886	11.7899	0.4489	14.237	0.4046	-95.4469	0.4048	-28.8108	0.4463	-3.2785
1.6	0.5118	6.4957	0.5027	7.0114	0.4684	9.3812	0.433	10.7259	0.3825	-5.4103	0.3742	-97.0482	0.4191	-2.3362
1.8	0.4879	6.4348	0.4799	6.8078	0.4495	8.3629	0.4178	9.3673	0.365	0.0148	0.3469	101.4648	0.3945	-1.6809
2	0.4661	6.4116	0.459	6.6978	0.4316	7.8281	0.4002	8.471	0.3505	2.3275	0.3225	68.9583	0.3721	-1.1536
2.4	0.4275	6.4285	0.4216	6.6189	0.3989	7.3336	0.372	7.8233	0.3283	5.0297	0.2816	-12.3574	0.3326	-0.3104
2.5	0.4187	6.4406	0.4131	6.616	0.3913	7.2698	0.3654	7.7308	0.3233	5.4249	0.2728	-6.7675	0.3237	-0.1141
2.8	0.3943	6.4873	0.3893	6.629	0.3699	7.1508	0.3467	7.542	0.3069	6.0746	0.2498	-1.5313	0.2988	0.4631
3	0.3794	6.5241	0.3747	6.6499	0.3566	7.111	0.335	7.4712	0.2962	6.2878	0.2367	-0.5522	0.2835	0.8866
3.5	0.3462	6.6233	0.3422	6.7226	0.3267	7.0845	0.3081	7.3846	0.2761	6.7816	0.2108	0.0503	0.2498	2.1463
4	0.3177	6.7232	0.3143	6.8063	0.3009	7.1087	0.2845	7.3649	0.2551	7.0099	0.1922	0.0004	0.2213	3.9045
5	0.2721	6.9006	0.2694	6.9651	0.2586	7.1987	0.2455	7.4058	0.2212	7.1953	0.1673	0.1007	0.1768	-2.6341
7	0.2093	7.1537	0.2073	7.1994	0.1996	7.3617	0.1906	7.4973	0.1731	7.3347	0.1363	0.72	0.1225	3.5508
8	0.1871	7.2392	0.1855	7.2784	0.1791	7.4142	0.1712	7.5172	0.1555	7.3277	0.1277	1.086	0.1056	4.4098
10	0.1538	7.3579	0.1524	7.3859	0.1472	7.4754	0.1414	7.5186	0.1299	7.2129	-	-	-	-
15	0.1073	7.4964	0.1063	7.5005	0.1018	7.4839	0.0978	7.3748	0.0922	6.7467	-	-	-	-
30	0.0666	7.5829	0.0652	7.5483	0.0589	7.3237	0.0489	6.6333	0.0201	-11.4113	-	-	-	-

Figura 95. Velocidad umbral al cuadrado (P^2_{umb}) vs. número de Sommerfeld (S) para una chumacera hidrodinámica corta presurizada cuando $\gamma = \pi/6$, a=0, (L/D) = (1/4), *fprt* \approx 0, *fprt*=1, 5, 10, 20, 50 y 100.

Velocidad umbral de estabilidad para $\gamma = 11\pi/6$ y a=0.

							γ=11 π/6	6, a=0						
	f _{prt} =0		f _{prt} =1		f _{prt} =5		f _{prt} =10		f _{prt} =20		<i>f</i> _{prt} =50		<i>f</i> _{prt} =100	
S	3	P^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	P ² umb	3	\mathbf{P}^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	P^2_{umb}
0.004	0.9642	-0.298	0.9623	-0.5526	0.9606	-1.0469	0.9599	-1.3784	0.9592	-1.7889	0.9584	-2.4239	0.9578	-2.8836
0.008	0.9577	-0.366	0.9556	-0.5351	0.9528	-0.913	0.9514	-1.1879	0.9498	-1.5494	0.9476	-2.1571	0.9463	-2.6418
0.01	0.9546	-0.4009	0.9523	-0.5553	0.9491	-0.9208	0.9473	-1.1969	0.9453	-1.5697	0.9426	-2.2163	0.9408	-2.7494
0.013	0.95	-0.4546	0.9475	-0.5968	0.9436	-0.9603	0.9413	-1.2488	0.9388	-1.6513	0.9353	-2.3779	0.9329	-3.0009
0.02	0.9397	-0.5855	0.9368	-0.7171	0.9317	-1.1035	0.9284	-1.4388	0.9247	-1.9347	0.9197	-2.8954	0.9163	-3.7766
0.05	0.9031	-1.2306	0.8994	-1.3509	0.8912	-1.8618	0.8858	-2.4075	0.8798	-3.3231	0.8718	-5.3968	0.8665	-7.6116
0.1	0.8625	-2.5423	0.8594	-2.6093	0.852	-3.1369	0.8469	-3.8283	0.8408	-5.1033	0.8311	-8.4028	0.8226	-12.7347
0.2	0.813	-6.9021	0.81	-6.6136	0.7986	-6.6379	0.7917	-7.4011	0.7824	-9.4053	0.766	-16.6803	0.7509	-31.4803
0.3	0.7706	-34.949	0.7682	-26.953	0.7599	-18.9896	0.7508	-17.9897	0.7391	-20.6747	0.7201	-38.8993	0.7019	-109.740
0.4	0.7359	30.7039	0.7336	41.2905	0.7254	259.3513	0.7174	-147.3165	0.7053	-86.8428	0.6827	-222.934	0.6625	252.3604
0.5	0.7072	14.5903	0.705	16.4505	0.6972	25.3633	0.6891	39.7931	0.6763	74.2344	0.652	102.628	0.629	81.7934
0.6	0.6817	10.8038	0.6795	11.707	0.6719	15.5636	0.6639	20.7443	0.651	30.985	0.6249	48.6652	0.5998	55.0706
0.7	0.6587	9.1475	0.6566	9.7345	0.6493	12.1601	0.6412	15.2902	0.628	21.4093	0.6008	34.4772	0.5736	44.3401
0.8	0.6376	8.2351	0.6356	8.6719	0.6284	10.4573	0.6204	12.7343	0.6071	17.2114	0.5789	27.969	0.55	38.6033
0.9	0.6181	7.67	0.6162	8.0211	0.6092	9.4499	0.6013	11.267	0.5879	14.8817	0.5588	24.2438	0.5283	35.1155
1	0.6001	7.2967	0.5982	7.5934	0.5913	8.7995	0.5835	10.3363	0.57	13.4234	0.5402	21.8717	0.5083	32.8262
1.2	0.5672	6.851	0.5655	7.0831	0.5588	8.0279	0.5512	9.2375	0.5377	11.7137	0.5068	19.0465	0.4724	30.1268
1.4	0.5381	6.6189	0.5364	6.815	0.5299	7.6151	0.5224	8.6464	0.509	10.7881	0.4772	17.4965	0.4409	28.7703
1.6	0.5118	6.4957	0.5102	6.6693	0.5039	7.3791	0.4965	8.2993	0.4831	10.2354	0.4509	16.5618	0.4128	28.1305
1.8	0.4879	6.4348	0.4863	6.5932	0.4802	7.2428	0.4729	8.0895	0.4597	9.8892	0.427	15.9856	0.3876	27.9188
2	0.4661	6.4116	0.4645	6.5593	0.4586	7.1665	0.4515	7.9615	0.4383	9.668	0.4053	15.6216	0.3647	27.9916
2.4	0.4275	6.4285	0.426	6.5626	0.4202	7.1164	0.4133	7.8476	0.4004	9.4408	0.3671	15.2859	0.325	28.6749
2.5	0.4187	6.4406	0.4173	6.5724	0.4116	7.117	0.4047	7.8373	0.3919	9.413	0.3586	15.2531	0.3162	28.9226
2.8	0.3943	6.4873	0.3929	6.6137	0.3873	7.1374	0.3806	7.8339	0.3679	9.3717	0.3347	15.2416	0.2918	29.7781
3	0.3794	6.5241	0.378	6.6479	0.3725	7.1618	0.3659	7.8472	0.3534	9.3688	0.3203	15.2845	0.2772	30.4224
3.5	0.3462	6.6233	0.3448	6.7431	0.3396	7.2418	0.3332	7.9118	0.321	9.4187	0.2885	15.4968	0.2452	32.2784
4	0.3177	6.7232	0.3164	6.841	0.3114	7.3332	0.3053	7.9981	0.2936	9.5087	0.2617	15.8095	0.219	34.1997
5	0.2721	6.9006	0.2709	7.0177	0.2663	7.5099	0.2606	8.1819	0.2494	9.7409	0.2193	16.5783	0.1786	38.151
7	0.2093	7.1537	0.2083	7.2755	0.2042	7.7921	0.1992	8.5098	0.1898	10.2061	0.1636	18.2244	0.1288	44.737
8	0.1871	7.2392	0.1862	7.3645	0.1826	7.8959	0.1782	8.6346	0.1694	10.4033	0.1441	19.1232	0.113	47.2435
10	0.1538	7.3579	0.153	7.4912	0.1495	8.0635	0.1457	8.8631	0.1385	10.7906	0.1182	20.3305	0.0911	50.9947
15	0.1073	7.4964	0.1066	7.6487	0.1034	8.3168	0.0995	9.3009	0.0952	11.5982	0.086	21.5653	0.0721	46.6126
30	0.0666	7.5829	0.0655	7.7468	0.0602	8.5664	0.0521	10.2763	-	-	-	-	-	-

Tabla 73. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*≈0, *fprt*=1, 5, 10, 20, 50 y 100.

Figura 96. Velocidad umbral al cuadrado (P^2_{umb}) vs. número de Sommerfeld (*S*) para una chumacera hidrodinámica corta presurizada cuando $\gamma = 11\pi/6$, a=0, (L/D) = (1/4), *fprt*≈0, *fprt*=1, 5, 10, 20, 50 y 100.

Velocidad umbral de estabilidad para $\gamma = 5\pi/6$ y a=0.

γ=5 π/6, a=0														
	f _{prt} =0		f _{prt} =1		f _{prt} =5		<i>f</i> _{prt} =10		f _{prt} =20		f _{prt} =50		<i>f</i> _{prt} =100	
S	3	P^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	\mathbf{P}^2_{umb}	ε _{pres}	P ² umb	3	\mathbf{P}^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	P^2_{umb}
0.004	0.9642	-0.298	0.9642	-0.3005	0.9642	-0.3127	0.9642	-0.3344	0.9643	-0.4232	0.9644	0.219	0.9646	-0.0309
0.008	0.9577	-0.366	0.9577	-0.3681	0.9578	-0.3777	0.9579	-0.3926	0.958	-0.436	0.9584	-1.1689	0.959	0.0965
0.01	0.9546	-0.4009	0.9546	-0.4031	0.9547	-0.4128	0.9548	-0.4273	0.955	-0.4675	0.9555	-0.8977	0.9563	0.2337
0.013	0.95	-0.4546	0.95	-0.457	0.9501	-0.4672	0.9503	-0.4823	0.9505	-0.5221	0.9512	-0.845	0.9523	0.5734
0.02	0.9397	-0.5855	0.9398	-0.5885	0.94	-0.6016	0.9402	-0.6202	0.9406	-0.6672	0.9417	-0.9739	0.9433	2.3579
0.05	0.9031	-1.2306	0.9032	-1.2398	0.9036	-1.2793	0.904	-1.3352	0.9049	-1.4756	0.9072	-2.4122	0.9105	4.4871
0.1	0.8625	-2.5423	0.8626	-2.5738	0.8631	-2.7107	0.8637	-2.9117	0.8648	-3.4568	0.8679	-10.1612	0.8724	2.9752
0.2	0.813	-6.9021	0.8132	-7.0809	0.8143	-7.8977	0.8155	-9.2244	0.8177	-13.8877	0.8233	25.6109	0.8301	4.1515
0.3	0.7706	-34.949	0.7709	-39.680	0.7721	-86.0196	0.7735	191.5945	0.7761	25.8819	0.7828	7.2122	0.7914	3.206
0.4	0.7359	30.7039	0.7363	27.9256	0.7378	20.5664	0.7395	15.5419	0.7428	10.5308	0.7515	5.5074	0.7637	3.2449
0.5	0.7072	14.5903	0.7077	13.9626	0.7094	11.9421	0.7114	10.1559	0.7152	7.8891	0.7249	4.8773	0.738	3.1418
0.6	0.6817	10.8038	0.6822	10.4695	0.6842	9.3391	0.6866	8.2649	0.691	6.7869	0.7021	4.5876	0.717	3.1875
0.7	0.6587	9.1475	0.6592	8.9151	0.6615	8.1125	0.6642	7.3244	0.6691	6.1968	0.6813	4.4183	0.6968	3.1798
0.8	0.6376	8.2351	0.6382	8.0524	0.6408	7.4145	0.6438	6.7778	0.6493	5.8478	0.6626	4.3262	0.6792	3.2242
0.9	0.6181	7.67	0.6188	7.516	0.6216	6.9751	0.6249	6.4296	0.6308	5.6224	0.6454	4.2796	0.6632	3.2813
1	0.6001	7.2967	0.6009	7.1614	0.6039	6.684	0.6074	6.1993	0.6138	5.4761	0.6293	4.2561	0.6484	3.3448
1.2	0.5672	6.851	0.5681	6.7381	0.5716	6.3386	0.5756	5.9305	0.5829	5.3167	0.6005	4.2687	0.6215	3.4702
1.4	0.5381	6.6189	0.5391	6.5193	0.543	6.1659	0.5475	5.8039	0.5555	5.2572	0.5747	4.3173	0.5979	3.6081
1.6	0.5118	6.4957	0.5129	6.4049	0.5171	6.0822	0.5221	5.7511	0.5309	5.2507	0.5518	4.3921	0.5764	3.7435
1.8	0.4879	6.4348	0.4891	6.3503	0.4937	6.0502	0.499	5.7422	0.5085	5.2762	0.5307	4.4773	0.5571	3.8838
2	0.4661	6.4116	0.4674	6.332	0.4722	6.0493	0.4779	5.759	0.4879	5.3205	0.5115	4.5716	0.5393	4.0226
2.4	0.4275	6.4285	0.4289	6.3563	0.4342	6.0997	0.4404	5.8363	0.4515	5.4396	0.4773	4.7692	0.5077	4.296
2.5	0.4187	6.4406	0.4201	6.3699	0.4256	6.1186	0.4319	5.8606	0.4432	5.4724	0.4695	4.8192	0.5005	4.364
2.8	0.3943	6.4873	0.3958	6.4205	0.4015	6.1831	0.4081	5.9396	0.4198	5.5739	0.4477	4.9684	0.48	4.5585
3	0.3794	6.5241	0.3809	6.4595	0.3867	6.2299	0.3935	5.9949	0.4056	5.643	0.4341	5.0649	0.4675	4.686
3.5	0.3462	6.6233	0.3477	6.5632	0.3538	6.3497	0.3608	6.1318	0.3734	5.8085	0.4036	5.295	0.439	4.9875
4	0.3177	6.7232	0.3193	6.6663	0.3254	6.4648	0.3326	6.2603	0.3457	5.9612	0.3769	5.5038	0.4139	5.2644
5	0.2721	6.9006	0.2736	6.8475	0.2796	6.6608	0.2868	6.474	0.2998	6.2086	0.3322	5.8477	0.3714	5.734
7	0.2093	7.1537	0.2107	7.1014	0.2161	6.9197	0.2226	6.7439	0.2348	6.5116	0.2669	6.2937	0.3074	6.3968
8	0.1871	7.2392	0.1883	7.185	0.1932	6.9972	0.1992	6.8167	0.2112	6.5913	0.2419	6.4151	0.2826	6.6185
10	0.1538	7.3579	0.155	7.2981	0.1596	7.0938	0.165	6.9014	0.1751	6.663	0.203	6.5366	0.2422	6.8925
15	0.1073	7.4964	0.1082	7.4194	0.1117	7.157	0.1157	6.9097	0.1229	6.5975	0.143	6.425	0.1764	7.0193
30	0.0666	7.5829	0.0678	7.488	0.0718	7.1884	0.0756	6.922	0.08	6.5457	0.085	5.8431	0.0948	5.7686

Tabla 74. Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato de entrada es el número de Sommerfeld, $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt*≈0, *fprt*=1, 5, 10, 20, 50 y 100.

Figura 97 Velocidad umbral al cuadrado (P^2_{umb}) vs. número de Sommerfeld (*S*) para una chumacera hidrodinámica corta presurizada cuando $\gamma = 5\pi/6$, a=0, (L/D) = (1/4), *fprt* \approx 0, *fprt*=1, 5, 10, 20, 50 y 100.

10.5.4 Velocidad umbral de estabilidad para $\gamma = 7\pi/6$ y a=0.

Tabla 75.	Velocidad umbral de estabilidad para una chumacera hidrodinámica presurizada tipo corta, cuando el dato
de	entrada es el número de Sommerfeld, $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), <i>fprt</i> \approx 0, <i>fprt</i> =1, 5, 10, 20, 50 y 100.

γ=7 π/6														
	fpi	f _{prt} =0		f _{prt} =1		f _{prt} =5 f		- _t =10	f _{prt} =20		<i>f_{prt}=</i> 50		<i>f</i> _{prt} =100	
S	З	\mathbf{P}^2_{umb}	ε _{pres}	\mathbf{P}^2_{umb}	ε _{pres}	\mathbf{P}^2_{umb}	ε _{pres}	\mathbf{P}^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	P^2_{umb}	ε _{pres}	\mathbf{P}^2_{umb}
0.004	0.9642	-0.298	0.9642	-0.2965	0.9642	-0.291	0.9643	-0.2856	0.9643	-0.2777	0.9645	-0.2681	0.9647	-0.2695
0.008	0.9577	-0.366	0.9577	-0.3647	0.9578	-0.3598	0.9578	-0.3545	0.958	-0.3461	0.9583	-0.3314	0.9588	-0.323
0.01	0.9546	-0.4009	0.9546	-0.3996	0.9547	-0.3946	0.9547	-0.3892	0.9549	-0.3802	0.9553	-0.3637	0.9559	-0.3526
0.013	0.95	-0.4546	0.95	-0.4532	0.9501	-0.4479	0.9502	-0.4419	0.9504	-0.432	0.9509	-0.4128	0.9517	-0.3981
0.02	0.9397	-0.5855	0.9398	-0.5837	0.9399	-0.577	0.94	-0.5694	0.9403	-0.5564	0.9411	-0.5299	0.9423	-0.5071
0.05	0.9031	-1.2306	0.9032	-1.2258	0.9034	-1.2077	0.9036	-1.1871	0.9041	-1.1514	0.9056	-1.0751	0.908	-1.0021
0.1	0.8625	-2.5423	0.8626	-2.528	0.8628	-2.4738	0.8631	-2.4122	0.8638	-2.3061	0.8657	-2.0799	0.8686	-1.8624
0.2	0.813	-6.9021	0.8131	-6.8282	0.8136	-6.5548	0.8142	-6.2556	0.8154	-5.7661	0.8186	-4.8181	0.8234	-4.0066
0.3	0.7706	-34.949	0.7708	-33.4192	0.7713	-28.5374	0.772	-24.2843	0.7732	-18.9905	0.7769	-12.2135	0.7826	-8.4419
0.4	0.7359	30.7039	0.7361	31.8339	0.7367	37.1801	0.7375	46.5546	0.7391	88.0938	0.7437	-69.446	0.7509	-21.576
0.5	0.7072	14.5903	0.7074	14.8163	0.7081	15.7707	0.709	17.0902	0.7108	20.2584	0.716	38.2662	0.7241	-375.89
0.6	0.6817	10.8038	0.6819	10.9174	0.6827	11.3847	0.6838	11.9995	0.6858	13.3438	0.6917	18.6106	0.7008	36.1063
0.7	0.6587	9.1475	0.6589	9.2233	0.6598	9.5311	0.661	9.9274	0.6632	10.7604	0.6697	13.6384	0.6798	20.2136
0.8	0.6376	8.2351	0.6378	8.2928	0.6389	8.5254	0.6401	8.8208	0.6426	9.4275	0.6498	11.3832	0.6607	15.1769
0.9	0.6181	7.67	0.6184	7.7173	0.6195	7.9072	0.6209	8.1462	0.6236	8.6294	0.6313	10.1199	0.6432	12.7284
1	0.6001	7.2967	0.6004	7.3374	0.6016	7.5003	0.6031	7.7038	0.6059	8.1104	0.6142	9.3243	0.6269	11.3083
1.2	0.5672	6.851	0.5676	6.8839	0.5689	7.0146	0.5706	7.1762	0.5739	7.4931	0.5834	8.3938	0.5977	9.7234
1.4	0.5381	6.6189	0.5384	6.6474	0.54	6.76	0.5419	6.8981	0.5456	7.1651	0.5561	7.896	0.5718	8.9
1.6	0.5118	6.4957	0.5122	6.5214	0.5139	6.6228	0.516	6.746	0.52	6.9815	0.5315	7.6057	0.5488	8.4092
1.8	0.4879	6.4348	0.4884	6.4586	0.4902	6.5522	0.4925	6.6653	0.4969	6.879	0.5093	7.4297	0.5278	8.1013
2	0.4661	6.4116	0.4666	6.4341	0.4685	6.5223	0.471	6.6282	0.4757	6.8262	0.489	7.323	0.5087	7.8981
2.4	0.4275	6.4285	0.428	6.4494	0.4302	6.5308	0.433	6.6274	0.4383	6.8046	0.4532	7.2283	0.4751	7.6751
2.5	0.4187	6.4406	0.4193	6.4613	0.4215	6.5415	0.4243	6.6365	0.4298	6.8101	0.4451	7.2203	0.4674	7.6433
2.8	0.3943	6.4873	0.3949	6.5075	0.3973	6.5853	0.4003	6.6767	0.4061	6.8418	0.4224	7.2197	0.4462	7.5847
3	0.3794	6.5241	0.38	6.544	0.3825	6.621	0.3856	6.7109	0.3917	6.8718	0.4085	7.2329	0.4331	7.5689
3.5	0.3462	6.6233	0.3468	6.6433	0.3496	6.7195	0.3529	6.8077	0.3594	6.9628	0.3775	7.2954	0.4039	7.5789
4	0.3177	6.7232	0.3184	6.7435	0.3213	6.8211	0.3248	6.9099	0.3316	7.0635	0.3509	7.3803	0.3786	7.6334
5	0.2721	6.9006	0.2728	6.9228	0.2759	7.0066	0.2796	7.1011	0.2868	7.2607	0.3073	7.5715	0.3371	7.7995
7	0.2093	7.1537	0.2101	7.1821	0.2132	7.288	0.217	7.4049	0.2244	7.5962	0.2453	7.9472	0.2768	8.1934
8	0.1871	7.2392	0.1878	7.2714	0.1907	7.3912	0.1943	7.5227	0.2016	7.7354	0.2229	8.1148	0.2538	8.3846
10	0.1538	7.3579	0.1546	7.3984	0.1576	7.5475	0.1612	7.709	0.1682	7.9662	0.1876	8.4177	0.2181	8.7331
15	0.1073	7.4964	0.108	7.5572	0.1107	7.7782	0.1138	8.0129	0.1195	8.379	0.1347	8.9991	0.1607	9.3984
30	0.0666	7.5829	0.0677	7.6667	0.0714	7.9531	0.0752	8.2384	0.0801	8.6834	0.0857	9.6005	0.0917	10.2232

Figura 98. Velocidad umbral al cuadrado (P^2_{unb}) vs. número de Sommerfeld (*S*) para una chumacera hidrodinámica corta presurizada cuando $\gamma = 7\pi/6$, a=0, (L/D) = (1/4), *fprt*≈0, *fprt*=1, 5, 10, 20, 50 y 100.

Al observar las gráficas de la velocidad umbral (P^2_{umb}) se puede notar que el punto de presurización en $\gamma = \pi/6$ es altamente inestable para la presurización, debido a que reduce he la velocidad umbral de estabilidad, siendo el peor punto para la presurización de los casos analizados en esta tesis, de manera similar la velocidad umbral de estabilidad se reduce para el punto de presurización en $\gamma = 5\pi/6$. Los puntos que presentan un aumento en la velocidad umbral de estabilidad son en $\gamma = 11\pi/6$ y $7\pi/6$, ambos casos presentan aumentos de la velocidad umbral a cualquier intensidad de presurización.

Conclusiones.

La técnica de movilidad aplicada en este trabajo ha resultado ser eficiente, por lo cual puede considerarse aceptable para rápidas soluciones gráficas de un sistema rotor-chumacera, presentado mínimas variaciones y simplificando en gran manera la carga computacional en comparación con otros métodos, esto permitió obtener resultados en estado transitorio como en estado estable de manera precisa y rápida (La trayectoria del eje con respecto al tiempo, la variación de y con respecto al tiempo, el grosor mínimo (h_{min})de la película de lubricante, las posiciones de equilibrio, la excentricidad en estado estable, el ángulo de equilibrio en estado estable). Es importante notar que entre más grande sea el número de Sommerfeld, el tiempo que debe transcurrir para que el sistema alcance un estado estable es mayor en comparación de un número de Sommerfeld más pequeño, pero las posiciones de equilibrio serán más cercanas al centro geométrico de la chumacera y serán más grande el espesor mínimo de la película de lubricante lo cual permitirá una mayor capacidad de carga. Estas cualidades que presenta el método de movilidad aportan un mayor número de parámetros, los cuales son de gran utilidad al momento de diseñar y fabricar una máquina rotodinámica.

Por si sola la técnica de movilidad no pudo ser aplicada a sistemas presurizados, debido a que el vector de movilidad se obtuvo a partir de las sumas de fuerzas en estado transitorio sin presurización.

Para el análisis de los puntos de inyección (γ = Pi/6, 5Pi/6, 7Pi/6 y 11Pi/6) se utilizó la teoría de chumaceras presurizadas, la cual aplica la función Delta de Dirac para modelar en forma simplificada la presurización externa en una chumacera hidrodinámica. Añadiendo el término de presurización en forma analítica a la ecuación de Reynolds, la solución de esta ecuación permitió obtener las posiciones de equilibrio (ángulo y excentricidad de equilibrio) para los puertos de presurización analizados en esta tesis, sin embargo la expresión matemática obtenida puede ser utilizada para cualquier posición del puerto de presurización y para cada intensidad de presurización deseada, esto es de gran importancia, ya que al conocer la posición de equilibrio del rotor respecto al centro geométrico de la chumacera se puede elegir la posición más adecuada para la presurización.

Al observar las nuevas posiciones de equilibrio por efecto de la presurización, se puede concluir que las posiciones de presurización en γ = Pi/6 y 11Pi/6 son los que más cambio presentan en cuanto a la posición del rotor, además de presentar una disminución de la excentricidad, indicando que: si la presurización se sigue incrementando, la posición del centro del rotor pasara por encima del centro geométrico de la chumacera, esto se debe a que la intensidad de presurización actúa en sentido opuesto al de la fuerza del peso del sistema. Los puertos de presurización en γ =5Pi/6 y 7Pi/6 presentan menor variación en la posición del rotor con respecto al ángulo de equilibrio y un aumento en la excentricidad, esto se debe a que la intensidad de presurización del sistema.

Para el análisis de los coeficientes rotodinámicos (rigidez y amortiguamiento), se compararon los puntos de presurización γ = Pi/6, 5Pi/6, 7Pi/6 y 11Pi/6 con el caso clásico (sin presurización), se observó que la intensidad de presurización y la posición en la cual se presuriza, tienen mayor efecto si la posición es cercana a la línea de centros en estado estable (rotor-chumacera) y que se encuentre en el mismo sentido a la dirección de la fuerza. De los puntos de presurización en sus coeficientes rotodinámicos y mayor desplazamiento del rotor dentro de la chumacera, mientras tanto la posición de presurización que presenta menor variación y menor desplazamiento es: γ = 7 π /6, la cual es el punto más cercano a la línea de centros, pero opuesto al sentido de la fuerza.

Para aclarecer que posiciones son las más adecuadas para la presurización y saber si los cambios en las posiciones y en los coeficientes son benéficos para la estabilidad del sistema, se obtuvo las velocidades umbrales de estabilidad, de las cuales se observó que el punto de presurización que presenta la más alta inestabilidad en sus velocidades umbrales y reducción de la misma es en $\gamma = \pi/6$. De manera similar la velocidad umbral de estabilidad se reduce para el puerto de presurización en $\gamma = 5\pi/6$, por lo tanto, no es recomendable presurizar en esas posiciones.

Los puntos que presentan un aumento en la velocidad umbral de estabilidad son en γ = 11 π /6 y 7 π /6, ambos casos presentan aumentos de la velocidad umbral a cualquier intensidad de presurización, por lo tanto, en la práctica se les debe considerar como posición adecuadas para la presurización.

Referencias.

[1]Ignacio Ramírez Vargas, Tesis Doctoral de Teoría de chumaceras Presurizadas con Puertos Puntuales: Caso de la Chumacera Corta. ESIME Mexico D.F, (2007).

[2] Jhon M. Vance, *Rotordynamics of turbomachinery* (pp.202-257). New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication (1988).

[3] J. F. Booker, *Dynamically Loaded Journal Bearing: Mobility Method of Solution. Journal of basic engineering* (pp. 537-546), ASME. (1965).

[4] D. Dowson, Jean Frêne, Daniel Nicolas, Bernard Degueurce, Daniel Berthe, Maurice Godet, *Hydrodynamic Lubrication. Bearing and Thrust Bearings* (pp. 143-266). Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokio: ELSEVIER. (1997).

[5]Paulo Flores, JC Pineda Claro, Jorge Ambrósio, *Journal Bearings Subjected to Dynamic Loads: The Analitical Mobility* Method, Vol. 13 (pp115-127), APAET. Mecánica Experimental (2006).

[6]Tao He, Xiqun Lu, Jingzhi Zhu, Mobility Method Applied to Calculate the Lubrication Properties of Bearing under Dynamic Loads, Hindawi publishing Corporation (2012).

[7] Biao Yu, Jerzy T. Sawicki, Comparison of Mobility Method and Mass Conservation Method in a Study of Dynamically Loaded Journal Bearings, International Journal of Rotating Machinery, Hindawi Publishing Corporation International Journal of Rotating Machinery (pp. 71-79), (2002).

[8] Hamrock, B.J., Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York, 1994.

[9] Khonsari, M.M. Booser, E.R. (2001) Applied Tribology: Bearing Desing and Lubrication, John Wiley y Sons.

[10] Daniel Eduardo Rivera Arreola, Tesis doctoral de Investigación del comportamiento de la chumacera corta con puertos de presurización puntual. p. 1-49, SEPI-ESIME-IPN, Mexico D.F. (2015).

[11] Nathan Mayer, Tesis Maestría de Dynamically Loaded Self-Aligning Journal Bearings: A Mobility Method Approach, Rochester Institute of Technology, NY 14623, Estados Unidos (2004).

[12] Lempel M. Diamante and Tainting Lan. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s-1. Hindawi Publishing Corporation. Volume 2014, Article ID 234583, 6 pages

[13] A. M. Elias, A. A. Bakr, M. A. Alghamdi, and F. S. Ibrahim. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a No Isothermal Horizontal Surface in a Porous Medium. Hindawi Publishing Corporation. Volume 2012, Article ID 691802, 14 pages

[14] Neminath Bhujappa Naduvinamani, Siddangouda Apparao, and Ayyappa G. Hiremath. Effect of Surface Roughness and Viscosity-Pressure Dependency on the Couple Stress Squeeze Film Characteristics of Parallel Circular Plates. Hindawi Publishing Corporation. Volume 2014, Article ID 387413, 7 pages

[14] Chu Zhang, Jian-Gang Yang, Shi Liu, Qing-Shui Gao, and Yi Yang, Influence of Varnish on Bearing Performance and Vibration of Rotating Machinery, Hindawi International Journal of Rotating Machinery, Artículo ID 9131275, 10 pages (2017)

[15] Alexey V. Kornaev, Nickolay V. Kornaev, Elena P. Kornaeva, Leonid A. Savin, Application of Artificial Neural Networks to Calculation of Oil Film Reaction Forces and Dynamics of Rotors on Journal Bearings, Hindawi International Journal of Rotating Machinery, Article ID 9196701, 11 pages (2017).

[16] Xiaoyan Ye, Jing Wang, Desheng Zhang, Lanqian Hu, Xunan She, Experimental Research of Journal Orbit for Water-Lubricated Bearing, Hindawi Publishing Corporation Mathematical Problems in Engineering, Article ID 8361596, 11 pages (2016).

[17] YongliangWang, Yu Gao, Ying Cui, Zhansheng Liu, Establishment of Approximate Analytical Model of Oil Film Force for Finite Length Tilting Pad Journal Bearings, Hindawi Publishing Corporation International Journal of Rotating Machinery, Article ID 531209, 11 pages (2015).

[18] Jianfei Yao, Jinji Gao, Ya Zhang, WeiminWang, The Dynamic Analysis of Two-Rotor Three-Bearing System, Hindawi Publishing Corporation International Journal of Rotating Machinery, Article ID 342636, 15 pages (2015).

[19] Sandeep Soni, D. P. Vakharia, Performance Analysis of Short Journal Bearing under Thin Film Lubrication, Hindawi Publishing Corporation ISRN Mechanical Engineering, Article ID 281021, 8 pages (2014).

[20] H. Rasooli Shooroki, R. Rashidi Meybodi, S. M. Karbassi, G. B. Loghmani, Numerical solution of Reynold's equation governing noncircular gas bearing system using radial basis function, Iranian Journal of Science & Technology IJST Article 38A4: Pages 389-397 (2014).

[21] Hui-Hui Feng, Chun-Dong Xu, Jie Wan, Mathematical Model and Analysis of the Water-Lubricated Hydrostatic Journal Bearings considering the Translational and Tilting Motions, Hindawi Publishing Corporation Mathematical Problems in Engineering, Article ID 353769, 15 pages (2014).

[22] Ignacio Ramírez Vargas, Alberto Antonio García, Carlos De La Rosa Gutiérrez, Memorias Del XIX Congreso Internacional Anual De La SOMIM, p. 1015-1021, Instituto Tecnológico de Pachuca, Pachuca de Soto, Hidalgo, México (2013).

[23] Antonio-García A., Linares-Flores J., Arias-Montiel M., Investigación numérica de las condiciones de lubricación en chumaceras hidrodinámicas con el efecto del desalineamiento del eje, Ingeniería Investigación y Tecnología, volumen XIV, 7743 FI-UNAM, ISSN 1405- páginas 89-98 (2013).

[24] Tao He, Xiqun Lu, and Jingzhi Zhu, Mobility Method Applied to Calculate the Lubrication Properties of Bearing under Dynamic Loads, Hindawi Publishing Corporation ISRN Mechanical Engineering, Article ID 461472, 5 pages (2013).

[25] Cheng-ChiWang, Her-Terng Yau, Chi-Chang Wang, Chaotic and Subharmonic Motion Analysis of Floating Ring Gas Bearing System by Hybrid Numerical Method, Hindawi Publishing Corporation Mathematical Problems in Engineering, Article ID 145716, 14 pages (2013).

[26] Ulrich Werner, Theoretical Vibration Analysis Regarding Excitation due to Elliptical Shaft Journals in Sleeve Bearings of Electrical Motors, Hindawi Publishing Corporation International Journal of Rotating Machinery, Article ID 860293, 19 pages (2012).

[27] Cai-Wan Chang-Jian, Dynamic Analysis of a Hybrid Squeeze Film Damper Mounted Rub-Impact Rotor-Stator System, Hindawi Publishing Corporation Journal of Applied Mathematics, Article ID 279827, 21 pages (2012).

[28] Valery R. Nossova, D.E. Rivera Arreola, J.C. Gómez Mancilla, J.A. Meda Campaña, I. Ramírez Vargas, Análisis dinámico de estabilidad de un cojinete presurizado con inyección lateral de lubricante, ELSEVIER, (2011).

[29] J. Sharana Basavaraja, Satish C. Sharma, S. C. Jain, Performance of an Orifice Compensated Two-Lobe Hole-Entry Hybrid Journal Bearing, Hindawi Publishing Corporation Advances in Tribology, Article ID 871952, 10 pages (2008).

[30] Nathan Mayer, Tesis Maestría de Dynamically Loaded Self-Aligning Journal Bearings: A Mobility Method Approach, Rochester Institute of Technology, NY 14623, Estados Unidos (2004).

[31] Omidreza Ebrat, Zissimos P. Mourelatos, Nickolas Vlahopoulos, Kumar Vaidyanathan, Calculation of Journal Bearing Dynamic Characteristics Including Journal Misalignment and Bearing Structural Deformation, Tribology Transactions, 47: 94-102, 2004

[32] B. C. Majumdar, D.E. Brewe, Stability of a Rigid Rotor Supported on Oil-Film Journal Bearings Under Dynamic Load, National Seminar on Bearings. p. 12, NASA Research Assoclate, Madras, India, September 17-18, 1987